બે શાંન્ત ગણ $A$ અને $B$ આપેલ છે કે જેથી $n(A) = 2, n(B) = 3 $ હોય તો $A$ થી $B$ પરના કુલ સંબંધની સંખ્યા મેળવો.
જો $A = \{1, 2, 3\}$ તો $A$ પરના ભિન્ન સંબંધની સંખ્યા મેળવો.
$A=\{1,2,3,4\}, B=\{1,5,9,11,15,16\}$ અને $f=\{(1,5),(2,9),(3,1),(4,5),(2,11)\}$ તો શું નીચેના વિધાનો સત્ય છે ? $f$ એ $A$ થી $B$ નો સંબંધ છે. પ્રત્યેક વિકલ્પમાં તમારા જવાબની સત્યાર્થતા ચકાસો.
આકૃતિમાં $P$ થી $Q$ નો સંબંધ દશાવેલ છે. આ સંબંધને યાદીની રીતે લખો. તેનો પ્રદેશ અને વિસ્તાર શું થશે?
સંબંધ $R = \{ \left( {x,{x^3}} \right):x$ એ $10$ કરતાં નાની અવિભાજ્ય સંખ્યા છે $\} $ ને યાદીના સ્વરૂપમાં લખો.