$A=\{1,2,3,4\}, B=\{1,5,9,11,15,16\}$ અને $f=\{(1,5),(2,9),(3,1),(4,5),(2,11)\}$ તો શું નીચેના વિધાનો સત્ય છે ? $f$ એ $A$ થી $B$ નો સંબંધ છે. પ્રત્યેક વિકલ્પમાં તમારા જવાબની સત્યાર્થતા ચકાસો. 

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$A=\{1,2,3,4\}$ and $B=\{1,5,9,11,15,16\}$

$\therefore A \times B=\{(1,1),(1,5),(1,9),(1,11),(1,15),(1,16),(2,1),(2,5),$

$(2,9),(2,11),(2,15),(216),(3,1),(3,5),(3,9),(3,11),(3,15),$ 

$(3,16),(4,1),(4,5),(4,9),(4,11),(4,15),(4,16)\}$

It is given that $f=\{(1,5),(2,9),(3,1),(4,5),(2,11)\}$

A relation from a non-empty set $A$ to a non-empty set $B$ is a subset of the Cartesian product $A \times B$

Thus, $f$ is a relation from $A$ to $B$.

Similar Questions

જો $A=\{x, y, z\}$ અને $B=\{1,2\}$ તો $A$ થી $B$ ના સંબંધોની સંખ્યા શોધો.

આકૃતિમાં $P$ થી $Q$ નો સંબંધ દર્શાવેલ છે. આ સંબંધને ગુણધર્મની રીતે લખો. તેનો પ્રદેશ અને વિસ્તાર શું થશે ?

જો $A=\{1,2,3,4,6\} .$ $R=\{ (a,b):a,b \in A,b$ એ $a$ વડે વિભાજ્ય છે. $\} $ થાય તે રીતે સંબંધ $R$ એ $A$ પર વ્યાખ્યાયિત છે, $R$ ને યાદીની રીતે લખો. 

જો $R$ એ $Q$ થી $Q$ પરનો $R=\{(a, b): a, b \in Q$ અને $a-b \in Z \}$ થાય તે રીતે વ્યાખ્યાયિત સંબંધ છે. તો બતાવો કે, પ્રત્યેક $a \in Q$ માટે, $(a, a) \in R$

$A=\{1,2,3,5\}$ અને $B=\{4,6,9\} .$ $R = \{ (x,y):$ $x$ અને $y$ નો તફાવત અયુગ્મ સંખ્યા છે ${\rm{; }}x \in A,y \in B\} $ થાય - તે રીતે સંબંધ $A$ થી $B$ પર વ્યાખ્યાયિત છે. $R$ ને યાદીની રીતે લખો.