मान लीजिए कि $X =\{$ राम, गीता, अकबर $\}$ कक्षा $XI$ के विद्यार्थियों का जो विद्यालय की हाकी टीम में हैं, एक समुच्चय है। मान लीजिए कि $Y =\{$ गीता, डेविड, अशोक $\}$ कक्षा $XI$ के विद्यार्थियों का, जो विद्यालय की फुटबाल टीम में हैं, एक समुच्चय है। $X \cup Y$ ज्ञात कीजिए और इस समुच्चय की व्याख्या कीजिए।
We have, $X \cup Y = \{ $ Ram, Geeta, Akbar, David, Ashok $\} $. This is the set of students from Class $XI$ who are in the hockey team or the football team or both.
$40$ छात्रों का एक समूह $3$ विषयों गणित, भौतिक विज्ञान तथा रसायन विज्ञान की परीक्षा में बैठा। यह पाया गया कि सभी छात्र कम से कम विषय में उत्तीर्ण हुए, $20$ छात्र गणित में उत्तीर्ण हुए, $25$ छात्र भौतिक विज्ञान में उत्तीर्ण हुए, $16$ छात्र रसायन विज्ञान में उत्तीर्ण हुए, अधिक से अधिक $11$ छात्र गणित तथा भौतिक विज्ञान दोनो में उत्तीर्ण हुए। अधिक से अधिक $15$ छात्र भौतिक विज्ञान तथा रसायन विज्ञान दोनो में उत्तीर्ण हुए, अधिक से अधिक $15$ छात्र गणित तथा रसायन विज्ञान दोनो में उत्तीर्ण हुए। तो तीनों विषयों में उत्तीर्ण होंने वाले छात्रों की अधिकतम संख्या है ............
एक निश्चित स्कूल में, $74 %$ छात्र क्रिकेट पसंद करते हैं, $76 %$ छात्र फुटबॉल पसंद करते हैं और $82 %$ टेनिस पसंद करते हैं। तब, कम से कम $......%$ छात्रों को तीनों खेलों की पसंद है।
एक विद्यालय के $20$ अध्यापक या तो गणित या भौतिकी पढ़ाते हैं, $ 12 $ गणित जबकि $4 $ दोनों विषय पढ़ाते हैं, तब केवल भौतिकी पढ़ाने वाले अध्यापकों की संख्या होगी
$140$ विद्यार्थियों, जिनके क्रमांक $1$ से $140$ हैं, की एक कक्षा में सभी सम क्रमांक के विद्यार्थियों ने गणित विषय चुना है, उन्होंने जिनके क्रमांग $3$ से विभाजित होते हैं भौतिक शास्त्र विषय चुना है तथा उन्होंने जिनके क्रमांक $5$ से विभाजित होते हैं, रसायन शास्त्र विषय चुना है। तो उन विद्यार्थियों की संख्या, जिन्होंने इन तीन में से कोई भी विषम नहीं चुना है
$200$ व्यक्ति किसी चर्म रोग से पीड़ित हैं, इनमें $120$ व्यक्ति रसायन $C _{1}, 50$ व्यक्ति रसायन $C _{2}$, और $30$ व्यक्ति रसायन $C _{1}$ और $C _{2}$ दोनों ही से प्रभावित हुए हैं, तो ऐसे व्यक्तियों की संख्या ज्ञात कीजिए जो प्रभावित हुए हों
रसायन $C _{2}$ किंतु रसायन $C _{1}$ से नहीं,