Let $[ x ]$ denote greatest integer less than or equal to $x .$ If for $n \in N ,\left(1-x+x^{3}\right)^{n}=\sum_{j=0}^{3 n} a_{j} x^{j}$, then $\sum_{j=0}^{\left[\frac{3 n}{2}\right]} a_{2 j}+4 \sum_{j=0}^{\left[\frac{3 n-1}{2}\right]} a_{2 j+1}$ is equal to

  • [JEE MAIN 2021]
  • A

    $2$

  • B

    $2^{ n -1}$

  • C

    $1$

  • D

    $n$

Similar Questions

If $\sum_{ k =1}^{10} K ^{2}\left(10_{ C _{ K }}\right)^{2}=22000 L$, then $L$ is equal to $.....$

  • [JEE MAIN 2022]

The coefficient of $x^{256}$ in the expansion of $(1-x)^{101}\left(x^{2}+x+1\right)^{100}$ is:

  • [JEE MAIN 2021]

Let $\left(\frac{n}{k}\right)=\frac{n !}{k !(n-k) !}$. Then the sum $\frac{1}{2^{10}} \sum \limits_{ k =0}^{10}\left(\frac{10}{ k }\right) k ^2$, lies in the interval

  • [KVPY 2021]

The coefficient of $x^{91}$ in the series $^{100}{C_1}\,{2^8}.\,{\left( {1\, - \,x} \right)^{99}}\, + {\,^{100}}{C_2}\,{2^7}.\,{\left( {1\, - \,x} \right)^{98}}\, + {\,^{100}}{C_3}\,{2^6}.\,{\left( {1\, - \,x} \right)^{97}}\, + \,....\, + {\,^{100}}{C_9}\,{\left( {1\, - \,x} \right)^{91}}$ is equal to -

The coefficient of $t^{50}$ in $(1 + t^2)^{25} (1 + t^{25}) (1 + t^{40}) (1 + t^{45}) (1 + t^{47})$ is