मान $[ x ]$ महत्तम पूर्णांक $\leq x$ है। यदि $n \in N$ के लिए $,\left(1-x+x^{3}\right)^{n}=\sum_{j=0}^{3 n} a_{j} x^{j}$ है, तो $\sum_{j=0}^{\left[\frac{3 n}{2}\right]} a_{2 j}+4 \sum_{j=0}^{\left[\frac{3 n-1}{2}\right]} a_{2 j+1}$ बराबर है
$2$
$2^{ n -1}$
$1$
$n$
${(1 + x)^{50}}$ के विस्तार में $x$ की विषम घातों के पदों के गुणांकों का योग होगा
यदि $\sum_{ r =1}^{10} r !\left( r ^{3}+6 r ^{2}+2 r +5\right)=\alpha(11 !)$ है, तो $\alpha$ का मान बराबर है ............ |
${C_0}{C_r} + {C_1}{C_{r + 1}} + {C_2}{C_{r + 2}} + .... + {C_{n - r}}{C_n}$=
$(1-x)^{100}$ के द्विपद प्रसार में प्रथम $50$ पदों के गुणांकों का योग बराबर है :
${(1 + x - 3{x^2})^{2163}}$ के विस्तार में गुणांकों का योग होगा