Let $S=\{a, b, c\}$ and $T=\{1,2,3\} .$ Find $F^{-1}$ of the following functions $F$ from $S$ to $T$. if it exists. $F =\{( a , 2)\,,(b , 1),\,( c , 1)\}$

Vedclass pdf generator app on play store
Vedclass iOS app on app store

$S =\{ a , b , c \}, \,\,T =\{1,2,3\}$

$F : S \rightarrow T$ is defined as $F =\{( a , 2),\,( b , 1),\,( c , 1)\}$

since $F ( b )= F ( c )=1$,    $F$ is not one - one.

Hence, $F$ is not invertible i.e., $F ^{-1}$ does not exist.

Similar Questions

If $f : R \to R, f(x) = x^2 + 1$, then $f^{-1}(17)$ and $f^{-1}(-3)$ are

Which of the following function is invertible

If $f(x) = {x^2} + 1$, then ${f^{ - 1}}(17)$ and ${f^{ - 1}}( - 3)$ will be

Consider $f:\{1,2,3\} \rightarrow\{a, b, c\}$ and $g:\{a, b, c\} \rightarrow$ $\{$ apple, ball, cat $\}$ defined as $f(1)=a$, $f(2)=b$,  $f(3)=c$,  $g(a)=$ apple, $g(b)=$ ball and $g(c)=$ cat. Show that $f,\, g$ and $gof$ are invertible. Find out $f^{-1}, \,g^{-1}$ and $(gof)^{-1}$ and show that $(gof)^{-1}=f^{-1}og^{-1}$

The inverse of the function $f(x) = \frac{{{e^x} - {e^{ - x}}}}{{{e^x} + {e^{ - x}}}} + 2$ is given by