यदि $A =\{1,2,3\}$ हो तो ऐसे संबंध जिनमें अवयव $(1,2)$ तथा $(1,3)$ हों और जो स्वतुल्य तथा सममित हैं किंतु संक्रामक नहीं है, की संख्या है

Vedclass pdf generator app on play store
Vedclass iOS app on app store

The given set is $A=\{1,2,3\}$.

The smallest relation containing $(1,2)$ and $(1,3)$ which is reflexive and symmetric, but not transitive is given by:

$R=\{(1,1),\,(2,2),\,(3,3),\,(1,2),\,(1,3),\,(2,1),\,(3,1)\}$

This is because relation $R$ is reflexive as $(1,1),\,(2,2),\,(3,3) \in R$

Relation $R$ is symmetric since $(1,2),\,(2,1) \in R$ and $(1,3),\,(3,1) \in R$

But relation $R$ is not transitive as $(3,1),\,(1,2) \in R,$ but $(3,2)\notin R$

Now, if we add any two pairs $(3,2)$ and $(2,3) $ (or both) to relation $R$, then relation $R$ will become transitive.

Hence, the total number of desired relations is one.

The correct answer is $D$.

Similar Questions

माना $N$ प्राकतिक संख्याओं का समुच्चय है और $N$ पर एक संबंध $R$ निम्न द्वारा परिभाषित है : $R=\left\{(x, y) \in N \times N: x^{3}-3 x^{2} y-x y^{2}+3 y^{3}=0\right\} \mid$ तो संबंध $R$ 

  • [JEE MAIN 2021]

माना $A =\{2,3,4,5, \ldots, 30\}$ है तथा $A \times A$ पर, $( a , b ) \simeq( c , d )$, यदि और केवल यदि $ad = bc$ है, द्वारा परिभाषित एक तुल्यता संबंध ' $=$ ' है। तो क्रमित युग्मों की संख्या, जो क्रमित युग्म $(4,3)$ के साथ इस तुल्यता संबंध को सन्तुष्ट करते हैं,

  • [JEE MAIN 2021]

समुच्चय $A$  पर परिभाषित संबंध $R$, प्रति सममित है, यदि $(a,\,b) \in R \Rightarrow (b,\,a) \in R$

मान $P$ सभी वास्तविक संख्याओं पर परिभाषित एक ऐसा संबंध है कि $P =\left\{( a , b ): \sec ^{2} a -\tan ^{2} b =1\right\}$ है, तो $P$

  • [JEE MAIN 2014]

मान लीजिए कि $A =\{1,2,3\}$ है। तब सिद्ध कीजिए कि ऐसे संबंधों की संख्या चार है, जिनमें $( 1,2)$ तथा $(2,3)$ हैं और जो स्वतुल्य तथा संक्रामक तो हैं किंतु सममित नहीं हैं।