मान लीजिए कि $A =\{1,2,3,4\}, B =\{1,5,9,11,15,16\}$ और $f=\{(1,5),(2,9),(3,1),(4,5), (2,11)\}$. क्या निम्नलिखित कथन सत्य हैं ?
$f, A$ से $B$ में एक संबंध है।
प्रत्येक दशा में अपने उत्तर का औचित्य बतलाइए ।
$A=\{1,2,3,4\}$ and $B=\{1,5,9,11,15,16\}$
$\therefore A \times B=\{(1,1),(1,5),(1,9),(1,11),(1,15),(1,16),(2,1),(2,5),$
$(2,9),(2,11),(2,15),(216),(3,1),(3,5),(3,9),(3,11),(3,15),$
$(3,16),(4,1),(4,5),(4,9),(4,11),(4,15),(4,16)\}$
It is given that $f=\{(1,5),(2,9),(3,1),(4,5),(2,11)\}$
A relation from a non-empty set $A$ to a non-empty set $B$ is a subset of the Cartesian product $A \times B$
Thus, $f$ is a relation from $A$ to $B$.
नीचे आकृति में समुच्चय $P$ और $Q$ के बीच एक संबंध दर्शाया गया है। इस संबंध को रोस्टर रूप में लिखिए। इसके प्रांत तथा परिसर क्या हैं ?
मान लीजिए कि $R , Q$ से $Q$ में $R =\{(a, b): a, b \in Q$ तथा $a-b \in Z \} .$ द्वारा परिभाषित, एक संबंध है। सिद्ध कीजिए कि
$(a, a) \in R$ सभी $a \in Q$ के लिए
माना कि $S=\{1,2,3,4,5,6\}$ है, और $X, S$ से $S$ में उन सभी संबंधों (relations) $R$ का समुच्चय (set) है जो निम्नलिखित दोनों गुणधर्मों (properties) को संतुष्ट करते हैं:
$i.$ $R$ में ठीक (exactly) 6 अवयव (elements) हैं।
$ii.$ प्रत्येक $(a, b) \in R$ के लिए $|a-b| \geq 2$ है।
माना कि $Y=\{R \in X: R$ के परिसर (range) में ठीक (exactly) एक अवयव (element) है $\}$
और $Z=\{R \in X: R, S$ से $S$ में एक फलन (function) है $\}$ ।
माना कि $n(A)$, समुच्चय $A$ में अवयवों की संख्या (number of elements) को दर्शाता है।
($1$) यदि $n(X)={ }^m C_6$ है, तब $m$ का मान .......... है।
($2$)यदि $n(Y)+n(Z)$ का मान $k^2$ है, तब $|k|$ .......... है।
इस प्रश्न के उतर दीजिये $1$ ओर $2.$
नीचे आकृति में समुच्चय $P$ और $Q$ के बीच एक संबंध दर्शाया गया है। इस संबंध को समुच्चय निर्माण रूप में
मान लीजिए कि $A =\{1,2,3,4,6\} .$ मान लीजिए कि $R , A$ पर $\{(a, b): a, b \in A ,$ संख्या $a$ संख्या $b$ को यथावथ विभाजित करती है $\}$ द्वारा परिभाषित एक संबंध है।
$R$ का परिसर ज्ञात कीजिए।