જો સમગુણોત્તર શ્રેણીનાં પ્રથમ $n$ પદોનો સરવાળો $S$, ગુણાકાર $P$ અને પ્રથમ $n$ પદોનાં વ્યસ્ત પદોનો સરવાળો $R$ હોય, તો સાબિત કરો કે $P ^{2} R ^{n}= S ^{n}$
Let the $G.P.$ be $a, a r, a r^{2}, a r^{3} \ldots . . a r^{n-1}$
According to the given information,
$S=\frac{a\left(r^{n}-1\right)}{r-1}$
$P=a^{n} \times r^{1+2+\ldots+n-1}$
$=a^{n} r^{\frac{n(n-1)}{2}}$ [ $\because $ Sum of first $4n$ natural number is $n \frac{(n+1)}{2}$ ]
$R=\frac{1}{a}+\frac{1}{a r}+\ldots \ldots+\frac{1}{a r^{n-1}}$
$=\frac{r^{n-1}+r^{n-2}+\ldots . r+1}{a r^{n-1}}$
$=\frac{1\left(r^{n}-1\right)}{(r-1)} \times \frac{1}{a r^{n-1}}$ [ $\because $ $1, r, \ldots \ldots r^{n-1}$ forms a $G.P.$ ]
$=\frac{r^{n}-1}{a r^{n-1}(r-1)}$
$\therefore P^{2} R^{n}=a^{2 n} r^{n(n-1)} \frac{\left(r^{n}-1\right)^{n}}{a^{n} r^{n(n-1)}(r-1)^{n}}$
$=\frac{a^{n}\left(r^{n}-1\right)^{n}}{(r-1)^{n}}$
$=\left[\frac{a\left(r^{n}-1\right)}{(r-1)}\right]^{n}$
$=S^{n}$
Hence, $P^{2} R^{n}=S^{n}$
જો $1 + r + r^2 + …. + r^n = (1 + r) (1 + r^2) (1 + r^4) (1 + r^8),$ હોય તો $n$ નું મૂલ્ય કેટલું થાય ?
સમીકરણ $x^2 - 18x + 9 = 0$ ઉકેલો વચ્ચેનો સમગુણોત્તર મધ્યક કયો હશે ?
જો $G_1 $ અને $G_2$ એ અનુક્રમે $ n_1 $ અને $n_2 $ કદની બે શ્રેણીઓના સમગુણોત્તર મધ્યકો હોય, અને $G$ એ તેમની સંયુક્ત શ્રેણીનો સમગુણોત્તર મધ્યક હોય તો $log G$ કોના બરાબર થાય છે ?
ધારોકે $a_1, a_2, a_3, \ldots .$. વધતી ધન સંખ્યાઓ ની સમગુણોત્તર શ્રેણી છે.ધારોકે તેના છઠા અને $8$મા પદોનો સરવાળો $2$ છે તથા તેના ત્રીજા અને $5$મા પદોનો ગુણાકાર $\frac{1}{9}$ છે.તો $6\left(a_2+a_4\right)\left(a_4+a_6\right)=.....$
સમગુણોત્તર શ્રેણી $2,8,32, \ldots$ $n$ પદ સુધી, માટે કયું પદ $131072$ હશે ?