ધારોકે $X _{1}, X _{2}, \ldots, X _{18}$ એ $18$ અવલોકન છે કે જેથી $\sum_{ i =1}^{18}\left( X _{ i }-\alpha\right)=36 \quad$ અને $\sum_{i=1}^{18}\left(X_{i}-\beta\right)^{2}=90,$ જ્યાં $\alpha$ અને $\beta$ ભિન્ન વાસ્તવિક સંખ્યાઓ છે. જે આ અવલોકનોનું પ્રમાણિત વિચલન $1$ હોય, તો $|\alpha-\beta|$ નું મૂલ્ય ........ થાય. .
$4$
$2$
$3$
$5$
$112, 116, 120, 125, 132$ અવલોકનોનું વિચરણ = ……..
પ્રથમ $50 $ યુગ્મ પ્રાકૃતિક સંખ્યાઓનું વિચરણ .. . . . . .છે.
ધારે કે કોઈ વર્ગમાં $7$ વિદ્યાર્થીઓ છે. આ વિદ્યાર્થીઓના ગણીત વિષયની પરીક્ષાના ગુણોની સરેેારાશ $62$ છે. તથા વિચરણ $20$ છે. જે $50$ કરતાં ઓછા ગુણ મેળવે તો વિદ્યાર્થી આ પરિક્ષામાં નાપાસ માનવામાં આવે, તો ખરાબમાં ખરાબ સ્થિતિમાં નાપાસ પનાર વિદ્યાર્થીઓની સંખ્યા...........છે.
ધારોકે $3 n$ સંખ્યાનું વિચરણ $4$ આપેલ છે. જો આ ગણમાં પ્રથમ $2 n$ સંખ્યાનો મધ્યક $6$ હોય અને બાકીની સંખ્યા $n$ નો મધ્યક $3$ છે. એક નવો ગણ બનાવીએ કે જેમાં પ્રથમ $2 n$ સંખ્યામાં $1$ ઉમેરીએ અને પછીની $n$ સંખ્યામાંથી $1$ બાદ કરીયે તો આ નવા ગણનું વિચરણ $k$ હોય તો $9 k$ મેળવો.
જો $\mathop \sum \limits_{i = 1}^9 \left( {{x_i} - 5} \right) = 9$ અને $\mathop \sum \limits_{i = 1}^9 {\left( {{x_i} - 5} \right)^2} = 45,$ તો અવલોકનો ${x_1},{x_2},\;.\;.\;.\;,{x_9}$ નું પ્રમાણિત વિચલન . . . . છે.