જો $\lambda \in R$ માટે સુરેખ સમીકરણ સહિતા
$2 x_{1}-4 x_{2}+\lambda x_{3}=1$
$x_{1}-6 x_{2}+x_{3}=2$
$\lambda x_{1}-10 x_{2}+4 x_{3}=3$ નો ઉકેલ શક્ય નથી
બરાબર $\lambda$ ની એક ઋણ કિમત માટે
બરાબર $\lambda$ ની એક ધન કિમત માટે
$\lambda$ ની બધી કિમત માટે
$\lambda$ ની બરાબર બે કિમતો માટે
સમીકરણ $\left| {\,\begin{array}{*{20}{c}}{3 - x}&{ - 6}&3\\{ - 6}&{3 - x}&3\\3&3&{ - 6 - x}\end{array}\,} \right| = 0$ ના બીજ મેળવો.
$\lambda$ અને $\mu$ ની કિમંત મેળવો કે જેથી સમીકરણ સંહતિ $x+y+z=6,3 x+5 y+5 z=26, x+2 y+\lambda z=\mu$ નો ઉકેલગણ ખાલીગણ થાય.
જો $'a'$ એ અવાસ્તવિક સંકર સંખ્યા છે કે જેથી સમીકરણો $ax -a^2y + a^3z= 0$ , $-a^2x + a^3y + az = 0$ અને $a^3x + ay -a^2z = 0$ ને શૂન્યતર ઉકેલ હોય તો $|a|$ મેળવો.
સુરેખ સમીકરણો $4x + y - 2z = 0\ ,\ x - 2y + z = 0$ ; $x + y - z =0 $ નો ઉકેલ એ . . . .
જો $\left| {\,\begin{array}{*{20}{c}}{{x^2} + x}&{x + 1}&{x - 2}\\{2{x^2} + 3x - 1}&{3x}&{3x - 3}\\{{x^2} + 2x + 3}&{2x - 1}&{2x - 1}\end{array}\,} \right| = Ax - 12$, તો $A$ મેળવો.