Let $A =\{2,3,4,5, \ldots ., 30\}$ and $^{\prime} \simeq ^{\prime}$ be an equivalence relation on $A \times A ,$ defined by $(a, b) \simeq (c, d),$ if and only if $a d=b c .$ Then the number of ordered pairs which satisfy this equivalence relation with ordered pair $(4,3)$ is equal to :

  • [JEE MAIN 2021]
  • A

    $5$

  • B

    $6$

  • C

    $8$

  • D

    $7$

Similar Questions

Let $A = \{1, 2, 3, 4\}$ and let $R= \{(2, 2), (3, 3), (4, 4), (1, 2)\}$ be a relation on $A$. Then $R$ is

Let $R$ be a reflexive relation on a finite set $A$ having $n$-elements, and let there be m ordered pairs in $R$. Then

Let $n$ be a fixed positive integer. Define a relation $R$ on the set $Z$ of integers by, $aRb \Leftrightarrow n|a - b$|. Then $R$ is

Let $N$ denote the set of all natural numbers and $R$ be the relation on $N \times N$ defined by $(a, b)$ $R$ $(c, d)$ if $ad(b + c) = bc(a + d),$ then $R$ is

Let $R$ be the relation on the set $R$ of all real numbers defined by $a \ R \ b$ if $|a - b| \le 1$. Then $R$ is