Let $R = \{(1, 3), (2, 2), (3, 2)\}$ and $S = \{(2, 1), (3, 2), (2, 3)\}$ be two relations on set $A = \{1, 2, 3\}$. Then $RoS =$

  • A

    $\{(1, 3), (2, 2), (3, 2), (2, 1), (2, 3)\}$

  • B

    $\{(3, 2), (1, 3)\}$

  • C

    $\{(2, 3), (3, 2), (2, 2)\}$

  • D

    $\{(2, 3), (3, 2)\}$

Similar Questions

Let $A$ be the non-void set of the children in a family. The relation $'x$ is a brother of $y'$ on $A$ is

Let $R$ be a relation on the set of all natural numbers given by $\alpha b \Leftrightarrow \alpha$ divides $b^2$.

Which of the following properties does $R$ satisfy?

$I.$ Reflexivity   $II.$ Symmetry   $III.$ Transitivity

  • [KVPY 2017]

If $R = \{ (x,\,y)|x,\,y \in Z,\,{x^2} + {y^2} \le 4\} $ is a relation in $Z$, then domain of $R$ is

Let $R_{1}$ and $R_{2}$ be two relations defined on $R$ by $a R _{1} b \Leftrightarrow a b \geq 0$ and $a R_{2} b \Leftrightarrow a \geq b$, then

  • [JEE MAIN 2022]

Let $A = \{1, 2, 3\}, B = \{1, 3, 5\}$. $A$ relation $R:A \to B$ is defined by $R = \{(1, 3), (1, 5), (2, 1)\}$. Then ${R^{ - 1}}$ is defined by