Let $S=\{1,2,3, \ldots, 10\}$. Suppose $M$ is the set of all the subsets of $S$, then the relation $R=\{(A, B): A \cap B \neq \phi ; A, B \in M\}$ is :
symmetric and reflexive only
reflexive only
symmetric and transitive only
symmetric only
Let $P$ be the relation defined on the set of all real numbers such that
$P = \left\{ {\left( {a,b} \right):{{\sec }^2}\,a - {{\tan }^2}\,b = 1\,} \right\}$. Then $P$ is
The number of relations, on the set $\{1,2,3\}$ containing $(1,2)$ and $(2,3)$, which are reflexive and transitive but not symmetric, is
Let L be the set of all lines in a plane and $\mathrm{R}$ be the relation in $\mathrm{L}$ defined as $\mathrm{R}=\left\{\left(\mathrm{L}_{1}, \mathrm{L}_{2}\right): \mathrm{L}_{1}\right.$ is perpendicular to $\left. \mathrm{L} _{2}\right\}$. Show that $\mathrm{R}$ is symmetric but neither reflexive nor transitive.
For $\alpha \in N$, consider a relation $R$ on $N$ given by $R =\{( x , y ): 3 x +\alpha y$ is a multiple of 7$\}$.The relation $R$ is an equivalence relation if and only if.
Let $A = \{1, 2, 3\}, B = \{1, 3, 5\}$. $A$ relation $R:A \to B$ is defined by $R = \{(1, 3), (1, 5), (2, 1)\}$. Then ${R^{ - 1}}$ is defined by