माना परवलय $y ^{2}=4 x -20$ के बिन्दु $(6,2)$ पर स्पर्श रेखा $L$ है। यदि $L$, दीर्घवत्त $\frac{ x ^{2}}{2}+\frac{ y ^{2}}{ b }=1$ की भी एक स्पर्श रेखा है, तो $b$ का मान बराबर है

  • [JEE MAIN 2021]
  • A

    $11$

  • B

    $14$

  • C

    $16$

  • D

    $20$

Similar Questions

माना दीर्घवृत्त $9 x^2+4 y^2=36$ पर चार बिंदु $\mathrm{P}\left(\frac{2 \sqrt{3}}{\sqrt{7}}, \frac{6}{\sqrt{7}}\right), \mathrm{Q}, \mathrm{R}$ तथा $\mathrm{S}$ हैं। माना रेखाखंड $\mathrm{PQ}$ तथा $\mathrm{RS}$ परस्पर लंबवत है तथा मूलबिंदु से होकर जाते हैं। यदि $\frac{1}{(\mathrm{PQ})^2}+\frac{1}{(\mathrm{RS})^2}=\frac{\mathrm{p}}{\mathrm{q}}$, जहाँ $\mathrm{p}$ तथा $q$ असहभाज्य है, तो $\mathrm{p}+\mathrm{q}$ बराबर है :

  • [JEE MAIN 2023]

माना रेखा $5 x+7 y=50$ पर बिंदु $A(\alpha, 0)$ तथा $\mathrm{B}(0, \beta)$ हैं। माना बिंदु $\mathrm{P}$, रेखा खण्ड $\mathrm{AB}$ को अंतः $7: 3$ के अनुपात में बांटता है। माना दीर्घवृत्त $\mathrm{E}: \frac{\mathrm{x}^2}{\mathrm{a}^2}+\frac{\mathrm{y}^2}{\mathrm{~b}^2}=1$ की एक नियता $3 \mathrm{x}-25=0$ है तथा संगम नाभि $S$ है। यदि बिंदु $S$ से $\mathrm{x}$-अक्ष पर लंब, बिंदु $\mathrm{P}$ से होकर जाता है, तो $\mathrm{E}$ के नाभिलंब की लम्बाई है

  • [JEE MAIN 2024]

यदि रेखा $y = mx + c$ दीर्घवृत्त  $\frac{{{x^2}}}{{{b^2}}} + \frac{{{y^2}}}{{{a^2}}} = 1$ को स्पर्श करती है, तो $c = $

यदि परवलय $y ^{2}= x$ के एक बिन्दु $(\alpha, \beta),(\beta>0)$ पर, स्पर्श रेखा, दीर्घवृत्त $x ^{2}+2 y ^{2}=1$ की भी स्पर्श रेखा है, तो $\alpha$ बराबर है 

  • [JEE MAIN 2019]

एक मेहराव अर्ध-दीर्घवृत्ताकार रूप का है। यह $8$ मीटर चौड़ा और केंद्र से $2$ मीटर ऊँचा है। एक सिरे से $1.5$ मीटर दूर बिंदु पर मेहराव की ऊँचाई ज्ञात कीजिए।