જો $L$ એ પરવલય $y^{2}=4 x-20$ નો બિંદુ $(6,2)$ આગળનો સ્પર્શક છે. જો  $L$ એ ઉપવલય $\frac{ x ^{2}}{2}+\frac{ y ^{2}}{ b }=1$ નો પણ સ્પર્શક હોય તો $b$ ની કિમંત મેળવો.

  • [JEE MAIN 2021]
  • A

    $11$

  • B

    $14$

  • C

    $16$

  • D

    $20$

Similar Questions

ઉપવલય $\frac{{{x^2}}}{{16}}\,\, + \;\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1$ ની નાભિઓ અને  અતિવલય

$\frac{{{x^2}}}{{144}}\,\, - \,\,\frac{{{y^2}}}{{81}}\,\, = \,\,\frac{1}{{25}}$ ની નાભીઓ સમાન હોય  તો ${b^2}$ નું મૂલ્ય:

જે ઉપવલયનું એક શિરોબિંદુ  $(0, 7)$ હોય અને નિયામિકા $y = 12 $ હોય, તે ઉપવલયનું સમીકરણ....

${\text{P}}$ એ ઉપવલય $\frac{{{{\text{x}}^{\text{2}}}}}{{{{\text{a}}^{\text{2}}}}}\,\, + \,\,\frac{{{y^2}}}{{{b^2}}}\,\, = \,\,1\,\,$ પરનું બિંદુ છે. જ્યારે $\Delta PSS'\,$ નું ક્ષેત્રફળ મહતમ હોય,ત્યારે  $\Delta PSS'$ ($S$ અને $S'$ નાભિઓ) ની અંત: ત્રિજ્યા =.........

અહી ઉપવલય $E _1: \frac{ x ^2}{ a ^2}+\frac{ y ^2}{b^2}=1, a > b$ અને  $E _2: \frac{ x ^2}{A^2}+\frac{ y ^2}{B^2}=1, A< B$ ની ઉત્કેન્દ્રિતા $\frac{1}{\sqrt{3}}$ સમાન છે. તેઓની નાભીલંભની લંબાઈનો ગુણાકાર $\frac{32}{\sqrt{3}}$ અને  $E_1$ ની નાભીઓ વચ્ચેનું અંતર $4$ છે. જો $E_1$ અને $E_2$ એ બિંદુઓ $A, B, C$ અને $D$ આગળ છેદે છે તો ચ્તુષ્કોણ $A B C D$ નું ક્ષેત્રફળ મેળવો.

  • [JEE MAIN 2025]

ઉપવલય $\frac{x^{2}}{4}+\frac{y^{2}}{2}=1$ ના કોઈ પણ નાભિબિંદુમાંથી ઉપવલયના કોઈ પણ સ્પર્શક ને લંબપાદ પરના બિંદુપથ પરનું નીચેનામાંથી ક્યું બિંદુ આવેલ છે?

  • [JEE MAIN 2020]