माना $R =\{( P , Q ) \mid P$ तथा $Q$, मूलबिंदु से समान दूरी पर हैं $\}$ एक संबंध है। तो $(1,-1)$ का तुल्यता-वर्ग निम्न में से कौन सा समच्चय है ?
$S =\left\{( x , y ) \mid x ^{2}+ y ^{2}=4\right\}$
$S =\left\{( x , y ) \mid x ^{2}+ y ^{2}=1\right\}$
$S =\left\{( x , y ) \mid x ^{2}+ y ^{2}=\sqrt{2}\right\}$
$S=\left\{(x, y) \mid x^{2}+y^{2}=2\right\}$
सिद्ध कीजिए कि समस्त बहुभुजों के समुच्चय $A$ में, $R =\left\{\left( P _{1}, P _{2}\right): P _{1}\right.$ तथा $P _{2}$ की भुजाओं की संख्या समान हैं$\}$ प्रकार से परिभाषित संबंध $R$ एक तुल्यता संबंध है। $3, 4 ,$ और $5$ लंबाई की भुजाओं वाले समकोण त्रिभुज से संबधित समुच्चय $A$ के सभी अवयवों का समुच्चय ज्ञात कीजिए।
माना $N$ प्राकतिक संख्याओं का समुच्चय है और $N$ पर एक संबंध $R$ निम्न द्वारा परिभाषित है : $R=\left\{(x, y) \in N \times N: x^{3}-3 x^{2} y-x y^{2}+3 y^{3}=0\right\} \mid$ तो संबंध $R$
माना $ n(A) = n,$ तब $A$ के सभी संबंधों की कुल संख्या है
मान लीजिए कि $A =\{1,2,3\}$ है। तब सिद्ध कीजिए कि ऐसे संबंधों की संख्या चार है, जिनमें $( 1,2)$ तथा $(2,3)$ हैं और जो स्वतुल्य तथा संक्रामक तो हैं किंतु सममित नहीं हैं।
निर्थारित कीजिए कि क्या निम्नलिखित संबंधों में से प्रत्येक स्वतुल्य, सममित तथा संक्रामक हैं :
किसी विशेष समय पर किसी नगर के निवासियों के समुच्चय में निम्नलिखित संबंध $R.$
$R =\{(x, y): x$ तथा $y$ एक ही मोहल्ले में रहते है $\}$