ધારોકે $R =\{( P , Q ) \mid P$ અને $Q$ ઊગમબિંદુથી સમાન અંતરે આવેલ છે $\}$. એ એક સંબંધ છે, તો $(1,- 1)$ નો સામ્ય વર્ગ એ ........... ગણ છે.
$S =\left\{( x , y ) \mid x ^{2}+ y ^{2}=4\right\}$
$S =\left\{( x , y ) \mid x ^{2}+ y ^{2}=1\right\}$
$S =\left\{( x , y ) \mid x ^{2}+ y ^{2}=\sqrt{2}\right\}$
$S=\left\{(x, y) \mid x^{2}+y^{2}=2\right\}$
$R$ એ $\{11, 12, 13\}$ થી $\{8, 10, 12\}$ પર $y = x - 3$ દ્વારા વ્યાખ્યાયિત હોય તો ${R^{ - 1}}$ મેળવો.
જો $A = \{1, 2, 3\}, B = \{1, 3, 5\}.$ જો સંંબંધ $R$ એ $A$ થી $B$ પર છે કે જેથી $R =\{(1, 3), (2, 5), (3, 3)\}$. તો ${R^{ - 1}}$ મેળવો.
જે સ્વવાચક અને પરંપરિત હોય પરંતુ સંમિત ના હોય તેવા એક સંબંધનું ઉદાહરણ આપો
ધારો કે $f: X \rightarrow Y$ વિધેય છે. $X$ પર સંબંધ $R$ એ $R =\{(a, b): f(a)=f(b)\}$ દ્વારા આપેલ છે. $R$ એ સામ્ય સંબંધ છે કે નહિ તે ચકાસો.
જો $X$ એ ગણોનો સમુહ છે અને $R$ એ $X$ પરનો સંબંધ છે કે જે ‘$A$ અને $B$ અલગ ગણ છે.’ દ્વારા વ્યાખ્યાયિત હોય તો $R$ એ . .