ધારો કે $\alpha$ અને $\beta$ બે વાસ્તવિક સંખ્યાઓ છે કે જેથી $\alpha+\beta=1$ અને $\alpha \beta=-1 .$ જો કોઈક પૂર્ણાંક $n \geq 1$ માટે ધારો કે $p _{ n }=(\alpha)^{ n }+(\beta)^{ n },p _{ n -1}=11$ અને $p _{ n +1}=29$ હોય, તો $p _{ n }^{2}$ નું મૂલ્ય ....  થાય.

  • [JEE MAIN 2021]
  • A

    $162$

  • B

    $324$

  • C

    $648$

  • D

    $424$

Similar Questions

$ \alpha $ એ  $x$ ની ન્યૂનતમ પૃણાંક કિમત છે કે જેથી $\frac{{x - 5}}{{{x^2} + 5x - 14}} > 0$ થાય તો .....

  • [JEE MAIN 2013]

જો $\alpha $ અને $\beta $ દ્રીઘાત સમીકરણ  $x^2 + x\, sin\,\theta  -2sin\,\theta  = 0$, $\theta  \in \left( {0,\frac{\pi }{2}} \right)$  ના ઉકેલો હોય તો $\frac{{{\alpha ^{12}} + {\beta ^{12}}}}{{\left( {{\alpha ^{ - 12}} + {\beta ^{ - 12}}} \right){{\left( {\alpha  - \beta } \right)}^{24}}}}$ ની કિમત મેળવો. 

  • [JEE MAIN 2019]

જો ${\rm{x}}$ બરાબર શું  થાય, તો $\frac{{8{x^2}\, + \,16x\, - \,51}}{{(2x - \,3)\,(x\, + \,4)}}\, > \,3\,\, = \,\,\,......$

$x^2 - 6x - 2 = 0$ ના બીજ $\alpha$ અને $\beta$ લો. જ્યાં $\alpha$ > $\beta$ જો બધા $n \geq 1$ માટે $a_n = \alpha^n - \beta^n$ હોય, તો $\frac{{{a_{10}} - 2{a_8}}}{{2{a_9}}}$ નું મૂલ્ય કેટલું થાય ?

સમીકરણ $|{x^2}$ $+ 4x + 3|$ $+  2x + 5 = 0$ ના બીજની સંખ્યા મેળવો.

  • [IIT 1988]