ધારો કે $\alpha$ અને $\beta$ બે વાસ્તવિક સંખ્યાઓ છે કે જેથી $\alpha+\beta=1$ અને $\alpha \beta=-1 .$ જો કોઈક પૂર્ણાંક $n \geq 1$ માટે ધારો કે $p _{ n }=(\alpha)^{ n }+(\beta)^{ n },p _{ n -1}=11$ અને $p _{ n +1}=29$ હોય, તો $p _{ n }^{2}$ નું મૂલ્ય .... થાય.
$162$
$324$
$648$
$424$
જો $S$ એ બધા $\alpha \in R$ નો ગણ છે કે જેથી $cos\,2 x + \alpha \,sin\, x = 2\alpha -7$ ને ઉકેલગણ મળે તો $S$ =
જો $x$ એ સમીકરણ $\sqrt {2x + 1} - \sqrt {2x - 1} = 1, \left( {x \ge \frac{1}{2}} \right)$ નો ઉકેલ હોય તો $\sqrt {4{x^2} - 1} $ ની કિમત મેળવો.
સમીકરણ ${4^x} - {3^{x\,\; - \;\frac{1}{2}}} = {3^{x + \frac{1}{2}}} - {2^{2x - 1}}\,$ માં ${\rm{x}}$ કિંમત =.....
સમીકરણ $x^{2016} -x^{2015} + x^{1008} + x^{1003} + 1 = 0,$ ના કેટલા સમેય ઉકેલો મળે ?
જો સમીકરણ $y = ax^2 -bx + c$ નો ગ્રાફ નીચે મુજબ હોય તો $a$, $b$, $c$ ના ચિહ્નો અનુક્રમે ......... થાય