If $\alpha, \beta$ are roots of the equation $x^{2}+5 \sqrt{2} x+10=0, \alpha\,>\,\beta$ and $P_{n}=\alpha^{n}-\beta^{n}$ for each positive integer $\mathrm{n}$, then the value of $\left(\frac{P_{17} P_{20}+5 \sqrt{2} P_{11} P_{19}}{P_{18} P_{19}+5 \sqrt{2} P_{18}^{2}}\right)$ is equal to $....$
$4$
$3$
$2$
$1$
If $x$ is real and satisfies $x + 2 > \sqrt {x + 4} ,$ then
Let $\alpha, \beta$ be two roots of the equation $x^{2}+(20)^{\frac{1}{4}} x+(5)^{\frac{1}{2}}=0$. Then $\alpha^{8}+\beta^{8}$ is equal to:
The least integral value $\alpha $ of $x$ such that $\frac{{x - 5}}{{{x^2} + 5x - 14}} > 0$ , satisfies
If $x$ be real, then the maximum value of $5 + 4x - 4{x^2}$ will be equal to
If $2 + i$ is a root of the equation ${x^3} - 5{x^2} + 9x - 5 = 0$, then the other roots are