Let $\mathrm{a}_{1}, \mathrm{a}_{2}, \mathrm{a}_{3}, \ldots$ be an $A.P.$ If $\frac{a_{1}+a_{2}+\ldots+a_{10}}{a_{1}+a_{2}+\ldots+a_{p}}=\frac{100}{p^{2}}, p \neq 10$, then $\frac{a_{11}}{a_{10}}$ is equal to :

  • [JEE MAIN 2021]
  • A

    $\frac{19}{21}$

  • B

    $\frac{100}{121}$

  • C

    $\frac{21}{19}$

  • D

    $\frac{121}{100}$

Similar Questions

Let ${S_n}$ denotes the sum of $n$ terms of an $A.P.$ If ${S_{2n}} = 3{S_n}$, then ratio $\frac{{{S_{3n}}}}{{{S_n}}} = $

The sum of the common terms of the following three arithmetic progressions.

$3,7,11,15,...................,399$

$2,5,8,11,............,359$ and

$2,7,12,17,...........,197$, is equal to $................$.

  • [JEE MAIN 2023]

Let ${a_1},{a_2},\;.\;.\;.\;.,{a_{49}}$ be in $A.P.$ such that $\mathop \sum \limits_{k = 0}^{12} {a_{4k + 1}} = 416$ and ${a_9} + {a_{43}} = 66$. If $a_1^2 + a_2^2 + \ldots + a_{17}^2 = 140m,$ then $m = \;\;..\;.\;.\;.\;$

  • [JEE MAIN 2018]

The arithmetic mean of first $n$ natural number

What is the sum of all two digit numbers which give a remainder of $4$ when divided by $6$ ?