माना $a_{1}, a_{2}, a_{3}, \ldots$ एक $A.P.$ है। यदि $\frac{a_{1}+a_{2}+\ldots+a_{10}}{a_{1}+a_{2}+\ldots+a_{p}}=\frac{100}{p^{2}}, p \neq 10$ है, तो $\frac{a_{11}}{a_{10}}$ बराबर है
$\frac{19}{21}$
$\frac{100}{121}$
$\frac{21}{19}$
$\frac{121}{100}$
$m$ संख्याओं को $1$ तथा $31$ के रखने पर प्राप्त अनुक्रम एक समांतर श्रेणी है और $7$ वीं एव $(m-1)$ वीं संख्याओं का अनुपात $5: 9$ है। तो $m$ का मान ज्ञात कीजिए।
माना $3,6,9,12, \ldots 78$ पदों तक तथा $5,9,13$, $17, \ldots 59$ पदों तक दो श्रेणीयाँ है। तब दोनों श्रेढ़ीयों के उभयनिप्ठ पदों का योगफल है
एक व्यक्ति ऋण का भुगतान $100$ रुपये की प्रथम किश्त से शुरू करता है। यदि वह प्रत्येक किश्त में $5$ रुपये प्रति माह बढ़ता है तो $30$ वीं किश्त की राशि क्या होगी ?
$200$ तथा $400$ के मध्य आने वाली उन सभी संख्याओं का योगफल ज्ञात कीजिए जो $7$ से विभाजित हों |
दी गई परिभाषाओं के आधार पर निम्नलिखित प्रत्येक अनुक्रम के प्रथम तीन पद बताइए
$a_{n}=\frac{n-3}{4}$