- Home
- Standard 12
- Mathematics
5. Continuity and Differentiation
hard
Let $\mathrm{f}$ be any continuous function on $[0,2]$ and twice differentiable on $(0,2)$. If $\mathrm{f}(0)=0, \mathrm{f}(1)=1$ and $f(2)=2$, then
A
$f^{\prime \prime}(x)=0$ for all $x \in(0,2)$
B
$f^{\prime \prime}(x)=0$ for some $x \in(0,2)$
C
$f^{\prime}(x)=0$ for some $x \in[0,2]$
D
$f^{\prime \prime}(x)>0$ for all $x \in(0,2)$
(JEE MAIN-2021)
Solution
$f(0)=0 \quad f(1)=1$ and $f(2)=2$
Let $\mathrm{h}(\mathrm{x})=f(\mathrm{x})-\mathrm{x}$ has three roots
By Rolle's theorem $\mathrm{h}^{\prime}(\mathrm{x})=f^{\prime}(\mathrm{x})-1$ has at least two roots
$\mathrm{h}^{\prime \prime}(\mathrm{x})=f^{\prime \prime}(\mathrm{x})=0$ has at least one roots
Standard 12
Mathematics
Similar Questions
normal