माना कोई फलन $f$ अंतराल $[0,2]$ में संतत है तथा $(0,2)$ में दो बार अवकलनीय है। यदि $f (0)=0$, $f(1)=1$ तथा $f(2)=2$, हैं, तो

  • [JEE MAIN 2021]
  • A

    सभी $x \in(0,2)$ के लिए $f ^{\prime \prime}( x )=0$ है

  • B

    किसी $x \in(0,2)$ के लिए $f ^{\prime \prime}( x )=0$ है

  • C

    किसी $x \in(0,2)$ के लिए $f ^{\prime}( x )=0$ है

  • D

    सभी $x \in(0,2)$ के लिए $f ^{\prime \prime}( x ) > 0$ है

Similar Questions

यदि मध्यमान प्रमेय से, $f'({x_1}) = \frac{{f(b) - f(a)}}{{b - a}}$, तो

फलन $f(x)$ मध्यमान प्रमेय की सभी शर्तो को अंतराल $ [0, 2] $ में सन्तुष्ट करता है। यदि $ f (0) = 0 $ और अंतराल $ [0, 2] $ में  $x $ के सभी मानों के लिये $|f'(x)|\, \le \frac{1}{2}$, तब

फलन $y=x^{2}+2$ के लिए रोले के प्रमेय को सत्यापित कीजिए, जब $a=-2$ तथा $b=2$ है।

उन बिंदुओं, जहाँ वक्र $\mathrm{y}=\mathrm{x}^5-20 \mathrm{x}^3+50 \mathrm{x}+2$, $\mathrm{x}$-अक्ष को काटता है, की संख्या है____________

  • [JEE MAIN 2023]

यदि फलन $f(x) = a{x^3} + b{x^2} + 11x - 6$ रोले प्रमेय की शतोर्ं को अन्तराल $[1, 3]$ के लिए सन्तुष्ट करता है तथा $f'\left( {2 + \frac{1}{{\sqrt 3 }}} \right) = 0$, तब $a$ और $b$ के मान क्रमश: हैं