3 and 4 .Determinants and Matrices
medium

અહી $A=\left[\begin{array}{ll}2 & 3 \\ a & 0\end{array}\right], a \in R$ ને જો  $P+Q$ સ્વરૂપે લખી શકાય કે જેમાં $P$ એ સંમિત શ્રેણિક છે અને $Q$ એ વિસંમિત છે . જો $\operatorname{det}(Q)=9$ હોય તો $|P|$ નાં બધીજ શક્ય કિંમતોનો સરવાળો મેળવો.

A

$24$

B

$18$

C

$45$

D

$36$

(JEE MAIN-2021)

Solution

$A=\left[\begin{array}{ll}2 & 3 \\ a & 0\end{array}\right], a \in R$

and and $P \frac{A+A^{T}}{2}=\left[\begin{array}{cc}2 & \frac{3+a}{2} \\ \frac{a+3}{2} & 0\end{array}\right]$

and $\operatorname{and} Q \frac{A-A^{T}}{2}=\left[\begin{array}{cc}0 & \frac{3-a}{2} \\ \frac{a-3}{2} & 0\end{array}\right]$

As, $\operatorname{det}(Q)=9$

$\Rightarrow(a-3)^{2}=36$

$\Rightarrow a=3 \pm 6$

$\therefore a=9,-3$

$\operatorname{det}(P)=$ $\left|\begin{array}{cc}2 & \frac{3+a}{2} \\ \frac{a+3}{2} & 0\end{array}\right|$

$=0-\frac{(a+3)^{2}}{4}=0, \text { for } a=-3 \Rightarrow \operatorname{det}(P)=0$

$=0-\frac{(a+3)^{2}}{4}=\frac{1}{4}(12)^{2}, \text { for } a=9 \Rightarrow \operatorname{det}(P)=36$

$\therefore$ Modulus of the sum of all possible values of det. $(P)=|36|+|0|=36$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.