Let $C_1$ be the circle of radius $1$ with center at the origin. Let $C_2$ be the circle of radius $\mathrm{I}$ with center at the point $A=(4,1)$, where $1<\mathrm{r}<3$. Two distinct common tangents $P Q$ and $S T$ of $C_1$ and $C_2$ are drawn. The tangent $P Q$ touches $C_1$ at $P$ and $C_2$ at $Q$. The tangent $S T$ touches $C_1$ at $S$ and $C_2$ at $T$. Mid points of the line segments $P Q$ and $S T$ are joined to form a line which meets the $x$-axis at a point $B$. If $A B=\sqrt{5}$, then the value of $r^2$ is

  • [IIT 2023]
  • A

    $2$

  • B

    $5$

  • C

    $8$

  • D

    $7$

Similar Questions

The radical centre of the circles ${x^2} + {y^2} - 16x + 60 = 0,\,{x^2} + {y^2} - 12x + 27 = 0,$ ${x^2} + {y^2} - 12y + 8 = 0$ is

The circles $x^2 + y^2 + 2x -2y + 1 = 0$ and $x^2 + y^2 -2x -2y + 1 = 0$ touch each  other :-

The number of common tangents to the circles ${x^2} + {y^2} = 1$and ${x^2} + {y^2} - 4x + 3 = 0$ is

The circles ${x^2} + {y^2} + 4x + 6y + 3 = 0$ and $2({x^2} + {y^2}) + 6x + 4y + C = 0$ will cut orthogonally, if $C$ equals

Coordinates of the centre of the circle which bisects the circumferences of the circles

$x^2 + y^2 = 1 ; x^2 + y^2 + 2x - 3 = 0$ and $x^2 + y^2 + 2y - 3 = 0$ is