- Home
- Standard 11
- Mathematics
Let $C_1$ be the circle of radius $1$ with center at the origin. Let $C_2$ be the circle of radius $\mathrm{I}$ with center at the point $A=(4,1)$, where $1<\mathrm{r}<3$. Two distinct common tangents $P Q$ and $S T$ of $C_1$ and $C_2$ are drawn. The tangent $P Q$ touches $C_1$ at $P$ and $C_2$ at $Q$. The tangent $S T$ touches $C_1$ at $S$ and $C_2$ at $T$. Mid points of the line segments $P Q$ and $S T$ are joined to form a line which meets the $x$-axis at a point $B$. If $A B=\sqrt{5}$, then the value of $r^2$ is
$2$
$5$
$8$
$7$
Solution

Let $C_2(x-4)^2+(y-1)^2=r^2$ radical axis $8 x+2 y-17=1-r^2$ $8 \mathrm{x}+2 \mathrm{y}=18-\mathrm{r}^2$ $\mathrm{B}\left(\frac{18-\mathrm{r}^2}{8}, 0\right) \mathrm{A}(4,1)$ $\mathrm{AB}=\sqrt{5}$ $\sqrt{\left(\frac{18-r^2}{8}-4\right)^2+1}=\sqrt{5}$ $r^2=2$ $\Rightarrow \mathrm{n}=\sin \alpha+\cos \alpha$