माना $f : R \rightarrow R$,$f(x+y)+f(x-y)=2 f(x) f(y), f\left(\frac{1}{2}\right)=-1$ द्वारा परिभाषित है। तो $\sum_{ k =1}^{20} \frac{1}{\sin ( k ) \sin ( k + f ( k ))}$ बराबर है

  • [JEE MAIN 2021]
  • A

    $\operatorname{cosec}^{2}(1) \operatorname{cosec}(21) \sin (20)$

  • B

    $\sec ^{2}(1) \sec (21) \cos (20)$

  • C

    $\operatorname{cosec}^{2}(21) \cos (20) \cos (2)$

  • D

    $\sec ^{2}(21) \sin (20) \sin (2)$

Similar Questions

यदि $f\left( x \right) + 2f\left( {\frac{1}{x}} \right) = 3x,x \ne 0$ है, तथा $S = \left\{ {x \in R:f\left( x \right) = f\left( { - x} \right)} \right\}$ है, तो $S :$

  • [JEE MAIN 2016]

माना $f( x )= a ^{ x }( a >0)$ को $f( x )=f_{1}( x )+f_{2}( x )$, के रूप में लिखा गया है जबकि $f_{1}( x )$ एक सम फलन है और $f_{2}( x )$ एक विषम फलन है, तो $f_{1}( x + y )+f_{1}( x - y )$ बराबर है 

  • [JEE MAIN 2019]

सिद्ध कीजिए कि $f(x)=\frac{1}{x}$ द्वारा परिभाषित फलन $f: R_* , \rightarrow R_*$, एकैकी तथा आच्छादक है, जहाँ $R_*$, सभी ऋणेतर वास्तविक संख्याओं का समुच्चय है। यदि प्रांत $R_*$, को $N$ से बदल दिया जाए, जब कि सहप्रांत पूर्ववत $R_*$ही रहे, तो भी क्या यह परिणाम सत्य होगा?

माना $f : R \rightarrow R , f ( x )=\frac{ x }{1+ x ^{2}}, x \in R$ द्वारा परिभाषित किया गया है, तो $f$ का परिसर है

  • [JEE MAIN 2019]

यदि $f(x) = \frac{{{x^2} - 1}}{{{x^2} + 1}}$ प्रत्येक वास्तविक संख्याओं के लिए, तब $f$ का न्यूनतम मान