माना $A =\left\{ n \in N \mid n ^{2} \leq n +10,000\right\}, B =\{3 k +1 \mid k \in N \}$ तथा $C =\{2 k \mid k \in N \}$ हैं, तो समुच्चय $A \cap( B - C )$ के सभी अवयवों का योगफल बराबर है ।
$832$
$412$
$963$
$123$
यदि $S$ धनात्मक पूर्णाकों का एक क्रमित युग्म $(x, y)$ इस प्रकार है कि $x^2-y^2=12345678$ तब
माना समुच्चय $\mathrm{C}=\left\{(\mathrm{x}, \mathrm{y}) \mid \mathrm{x}^2-2^{\mathrm{y}}=2023, \mathrm{x}, \mathrm{y} \in \mathbb{N}\right\}$ है। तो $\sum_{(x, y) \in C}(x+y)$ बराबर है ............
यदि ${A_1},\,{A_2},\,{A_3},........,{A_{30}}$ तीस समुच्चय इस प्रकार हैं कि प्रत्येक में $5$ अवयव हैं तथा ${B_1},\,{B_2}$, ......., $Bn, n $ समुच्चय इस प्रकार हैं कि प्रत्येक में $3$ अवयव हैं। माना $\bigcup\limits_{i = 1}^{30} {{A_i}} = \bigcup\limits_{j = 1}^n {{B_j}} $$= S$ तथा $ S$ का प्रत्येक अवयव $A'_is$ के $10$ वें तथा $B'_js$ के $9$ वें को पूर्णत: संतुष्ट करता है, तो $n$ बराबर है
माना $S =\{4,6,9\}$ तथा $T =\{9,10,11, \ldots, 1000\}$ हैं। यदि $A =\left\{ a _1+ a _2+\ldots+ a _{ k }: k \in N , a _1, a _2\right.$, $\left.a_3, \ldots, a_k \in S\right\}$ है, तो समुच्चय $T-A$ में सभी अवयवों का योग है $..........।$
माना $U _{ i =1}^{50} X _{ i }= U _{ i =1}^{ n } Y _{ i }= T$ है, जहाँ प्रत्येक $X _{ i }$ में $10$ अवयव हैं तथा प्रत्येक $Y_{i}$ में $5$ अवयव में है। यदि $T$ का प्रत्येक अवयव ठीक $20, X _{ i }$ समुच्चयों का एक अवयव है तथा ठीक $6, Y _{ i }$ समुच्चयों का एक अवयव है, तो $n$ का मान है