माना $f : N \rightarrow R$ एक फलन इस प्रकार है कि प्राकृत संख्याओं $x$ तथा $y$ के लिए $f(x+y)=2 f(x) f(y)$ है । यदि $f(1)=2$ है, तो $\alpha$ का मान, जिसके लिए $\sum \limits_{ k =1}^{10} f (\alpha+ k )=\frac{512}{3}\left(2^{20}-1\right)$  सत्य हो, होगा

  • [JEE MAIN 2022]
  • A

    $2$

  • B

    $3$

  • C

    $4$

  • D

    $6$

Similar Questions

फलन $f(x) = \frac{{{x^2} - 3x + 2}}{{{x^2} + x - 6}}$ का प्रान्त है

समुच्चय

$A -\left\{ x \in N : x ^2-10 x +9 \leq 0\right\}$ से समुच्चय

$B =\left\{ n ^2: n \in N \right\}$ में ऐसे फलनों $f$, जिनके लिए

$f ( x ) \leq( x -3)^2+1, x \in A$ है, की संख्या है $........$

  • [JEE MAIN 2022]

किसी वास्तविक संख्या $x$ के लिए यदि $[x]$ संख्या $x$ के पूर्णांक भाग को प्रदर्शित करें तो निम्न व्यंजक का मान होगा $\left[ {\frac{1}{2}} \right] + \left[ {\frac{1}{2} + \frac{1}{{100}}} \right] + \left[ {\frac{1}{2} + \frac{2}{{100}}} \right] + .... + \left[ {\frac{1}{2} + \frac{{99}}{{100}}} \right]$

  • [IIT 1994]

मान लीजिए कि $f: R \rightarrow R$ एक सतत फलन इस प्रकार है कि सभी $x \in R$ के लिए $f\left(x^2\right)=f\left(x^3\right)$ है। निम्न कथनों पर विचार करें

$I$. $f$ एक विषम फलन है

$II$. $f$ एक सम फलन है

$III$. $f$ सभी जगह अवकलनीय है तब

  • [KVPY 2019]

${\sin ^{ - 1}}\left[ {{{\log }_3}\left( {\frac{x}{3}} \right)} \right]$ का डोमेन (प्रान्त) है

  • [AIEEE 2002]