Let $f(x)=\frac{x-1}{x+1}, x \in R-\{0,-1,1)$. If $f^{a+1}(x)=f\left(f^{n}(x)\right)$ for all $n \in N$, then $f^{\prime}(6)+f(7)$ is equal to

  • [JEE MAIN 2022]
  • A

    $\frac{7}{6}$

  • B

    $-\frac{3}{2}$

  • C

    $\frac{7}{12}$

  • D

    $-\frac{11}{12}$

Similar Questions

The domain of the function $f(x) = \frac{{{{\sin }^{ - 1}}(x - 3)}}{{\sqrt {9 - {x^2}} }}$ is

  • [AIEEE 2004]

If the domain of the function $f(x)=\log _e\left(4 x^2+11 x+6\right)+\sin ^{-1}$ $(4 x+3)+\cos ^{-1}\left(\frac{10 x+6}{3}\right) \text { is }(\alpha, \beta]$ Then $36|\alpha+\beta|$ is equal to :

  • [JEE MAIN 2023]

Domain of function $f(x) = log|5{x} - 2x|$ is $x \in R - A$, then $n(A)$ is (where $\{.\}$ denotes fractional part function)

If $f(x) = \log \frac{{1 + x}}{{1 - x}}$, then $f(x)$ is

If domain of the function $\log _e\left(\frac{6 x^2+5 x+1}{2 x-1}\right)+\cos ^{-1}\left(\frac{2 x^2-3 x+4}{3 x-5}\right)$ is $(\alpha, \beta) \cup(\gamma, \delta]$, then $18\left(\alpha^2+\beta^2+\gamma^2+\delta^2\right)$ is equal to $....$.

  • [JEE MAIN 2023]