ધારો કે,$f(x)=\frac{x-1}{x+1}, x \in R -\{0,-1,1\} .$ ને પ્રત્યેક $n \in N$ માટે $f^{ n +1}$ $(x)=f\left(f^{ n }(x)\right)$ તો $f^{6}(6)+f^{7}(7)=$
$\frac{7}{6}$
$-\frac{3}{2}$
$\frac{7}{12}$
$-\frac{11}{12}$
$f(x)$ અને $g(x)$ એ બે વિધેય માટે $f\left( x \right) = \frac{{2\sin \pi x}}{x}$ અને $g\left( x \right) = f\left( {1 - x} \right) + f\left( x \right)$ છે. જો $g\left( x \right) = kf(\frac{x}{2})f\left( {\frac{{1 - x}}{2}} \right)$ હોય તો $k$ ની કિમત ........... થાય.
વિધેય $f(x) = \frac{x}{{1 + \left| x \right|}},\,x \in R,$ નો વિસ્તાર મેળવો.
વિધેય $f(x) = \frac{{{{\sin }^{ - 1}}(3 - x)}}{{\ln (|x|\; - 2)}}$ નો પ્રદેશ મેળવો.
વિધેય $f(x)=\frac{1}{\sqrt{[x]^2-3[x]-10}}$ નો પ્રદેશ $...........$ છે.
(જ્યાં [x] એ $\leq x$ અથવા તેનાથી નાનો મહત્તમ પૂર્ણાક દર્શાવે છે.)
ધારો કે $c , k \in R$ ને પ્રત્યેક $x, y \in R$ માટે $f(x)=( c +1) x^{2}+\left(1- c ^{2}\right) x+2 k$ અને $f(x+y)=f(x)+f(y)-x y$ હોય,તો $|2(f(1)+f(2)+f(3)+\ldots \ldots . .+f(20))|$નું મૂલ્ય $\dots\dots$ છે.