माना $f ( x )=\frac{ x -1}{ x +1}, x \in R -\{0,-1,1)$ है। यदि $f ^{ n +1}( x )= f \left( f ^{ n }( x )\right)$ है, तो $\forall n \in N$, है, तो $f ^6(6)+ f ^7(7)$ बराबर है
$\frac{7}{6}$
$-\frac{3}{2}$
$\frac{7}{12}$
$-\frac{11}{12}$
माना फलन $\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$ किसी $\mathrm{m}$ के लिए $f(x)=\log _{\sqrt{m}}\{\sqrt{2}(\sin x-\cos x)+m-2\}$ द्वारा परिभाषित है तथा $\mathrm{f}$ का परिसर $[0,2]$ है। तो $\mathrm{m}$ का मान है__________.
$f(x)=4 \sin ^{-1}\left(\frac{x^2}{x^2+1}\right)$ का परिसर है
यदि $R$ वास्तविक संख्याओं का एक समुच्चय इस प्रकार है कि $f: R \rightarrow R$ निम्नलिखित द्वारा परिभाषित होता है
$f(x)=\frac{[x]}{1+[x]^2}$, जहाँ $[x]$ अधिकतम पूर्णांक जो $x$ के बराबर या उससे छोटा है तथा $[x\}=x-[x]$.तब निम्नलिखित में से कौन सा कथन सत्य है ?
$I$. $f^{\prime}$ का परास $(range)$ एक बंद अन्तराल $(closed\,interval)$ है
$II$. $f, R$ पर सतत $(continuous)$ फलन है
$III$. $f$. $I$पर एकैक $(one-one)$ फलन है
माना फलन $f : R \rightarrow R$ इस प्रकार है कि $f ( x )= x ^{3}+ x ^{2} f ^{\prime}(1)+ xf ^{\prime \prime}(2)+ f ^{\prime \prime \prime}(3), x \in R$ तो $f(2)$ बराबर है
मान लें कि $f: R \rightarrow R$ एक फलन निम्न प्रकार से परिभाषित किया गया है
$f(x)=\left\{\begin{array}{cl}\frac{\sin \left(x^2\right)}{x} & \text { if } x \neq 0, \\
0 & \text { if } x=0\end{array}\right.$
तब $x=0$ पर $f$