Let $a>0, b>0$. Let $e$ and $\ell$ respectively be the eccentricity and length of the latus rectum of the hyperbola $\frac{ x ^{2}}{ a ^{2}}-\frac{ y ^{2}}{ b ^{2}}=1$. Let $e ^{\prime}$ and $\ell^{\prime}$ respectively the eccentricity and length of the latus rectum of its conjugate hyperbola. If $e ^{2}=\frac{11}{14} \ell$ and $\left( e ^{\prime}\right)^{2}=\frac{11}{8} \ell^{\prime}$, then the value of $77 a+44 b$ is equal to
$100$
$110$
$120$
$130$
The line $lx + my + n = 0$ will be a tangent to the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$, if
The radius of the director circle of the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$, is
If the length of the transverse and conjugate axes of a hyperbola be $8$ and $6$ respectively, then the difference focal distances of any point of the hyperbola will be
$P$ is a point on the hyperbola $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}}$ $= 1, N $ is the foot of the perpendicular from $P$ on the transverse axis. The tangent to the hyperbola at $P$ meets the transverse axis at $ T$ . If $O$ is the centre of the hyperbola, the $OT. ON$ is equal to :
A hyperbola passes through the points $(3, 2)$ and $(-17, 12)$ and has its centre at origin and transverse axis is along $x$ - axis. The length of its transverse axis is