माना $a > 0, b > 0$ है। माना अतिपरवलय $\frac{ x ^2}{ a ^2}-\frac{ y ^2}{ b ^2}=1$ की उत्केन्द्रता तथा नाभिलम्ब की लम्बाई क्रमशः $e$ तथा $\ell$ है। माना इसके संयुग्मी अतिपरवलय की उत्केन्द्रता तथा नाभिलम्ब की लम्बाई क्रमशः $e^{\prime}$ तथा $\ell^{\prime}$ है। यदि $e ^2=\frac{11}{14} \ell$ तथा $\left( e ^{\prime}\right)^2=\frac{11}{8} \ell^{\prime}$ है, तो $77 a +$ $44 b$ का मान है

  • [JEE MAIN 2022]
  • A

    $100$

  • B

    $110$

  • C

    $120$

  • D

    $130$

Similar Questions

माना अतिपरवलय $H : \frac{ x ^2}{ a ^2}- y ^2=1$ तथा दीर्घवत्त $E : 3 x ^2+4 y ^2=12$ इस प्रकार है कि $H$ तथा $E$ के नाभिलम्बों की लम्बाईयाँ समान हैं। यदि $e _{ H }$ तथा $e_E$ क्रमशः $H$ तथा $E$ की उत्केन्द्रताएं हो, तो $12\left( e _{ H }^2+ e _{ E }^2\right)$ का मान होगा $...............$

  • [JEE MAIN 2022]

माना अतिपरवलय $3 \mathrm{x}^2-4 \mathrm{y}^2=36$ पर बिन्दु $\mathrm{P}\left(\mathrm{x}_0, \mathrm{y}_0\right)$, रेखा $3 \mathrm{x}+2 \mathrm{y}=1$ के निकटतम है। तो $\sqrt{2}\left(\mathrm{y}_0-\mathrm{x}_0\right)$ बराबर है:

  • [JEE MAIN 2023]

उस बिन्दु $P(\alpha ,\,\beta )$ का बिन्दुपथ जो इस प्रकार गमन करता है कि रेखा $y = \alpha x + \beta $, अतिपरवलय $\frac{{{x^2}}}{{{a^2}}} - \frac{{{y^2}}}{{{b^2}}} = 1$ की स्पर्श रेखा है, है

  • [AIEEE 2005]

रेखाओं $bxt - ayt = ab$ तथा $bx + ay = abt$ के प्रतिच्छेद बिन्दु का बिन्दुपथ है

माना $a$ तथा $b$ क्रमशः, एक अतिपरवलय जिसकी उत्केंद्रता समीकरण $9 e^{2}-18 e+5=0$ को संतुष्ट करती है, के अर्धअनुप्रस्थ अक्ष तथा अर्धसंयुग्मी अक्ष हैं। यदि $S(5,0)$ इस अतिपरवलय की एक नाभि तथा $5 x=9$ संगत नियन्ता (directrix) है, तो $a^{2}-b^{2}$ बराबर है

  • [JEE MAIN 2016]