3 and 4 .Determinants and Matrices
hard

माना $M =\left[\begin{array}{cc}0 & -\alpha \\ \alpha & 0\end{array}\right]$ है, जहाँ $\alpha$ अशून्य वास्तविक तथा $N =\sum \limits_{ k =1}^{49} M ^{2 k }$ है। यदि $\left( I - M ^2\right) N =-2 I$ है, तो $\alpha$ का धनात्मक पूर्णांक मान है।

A

$4$

B

$3$

C

$2$

D

$1$

(JEE MAIN-2022)

Solution

$M =\left[\begin{array}{cc}0 & -\alpha \\ \alpha & 0\end{array}\right] ; M ^{2}=\left[\begin{array}{cc}-\alpha^{2} & 0 \\ 0 & -\alpha^{2}\end{array}\right]=-\alpha^{2} I$

$N = M ^{2}+ M ^{4}+\ldots \ldots+ M ^{98}=\left[-\alpha^{2}+\alpha^{4}-\alpha^{6}+\ldots .\right] I$

$=-\alpha^{2} \frac{\left(1-\left(-\alpha^{2}\right)^{49}\right)}{1+\alpha^{2}} . I$

$I – M ^{2}=\left(1+\alpha^{2}\right) I$

$\left( I – M ^{2}\right) N =-\alpha^{2}\left(\alpha^{98}+1\right)=-2$

$\alpha=1$

Standard 12
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.