3 and 4 .Determinants and Matrices
normal

माना $x =\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ तथा $A =\left[\begin{array}{ccc}-1 & 2 & 3 \\ 0 & 1 & 6 \\ 0 & 0 & -1\end{array}\right]$ हैं। $k \in N$ के लिए, यदि $X ^{\prime} A ^{ k } X =33$ है, तो $k$ बराबर है

A

$99$

B

$100$

C

$23$

D

$10$

(JEE MAIN-2022)

Solution

$X =\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right] ; A=\left[\begin{array}{ccc}-1 & 2 & 3 \\ 0 & 1 & 6 \\ 0 & 0 & -1\end{array}\right]$

$X^{ T } A ^{ K } X =33$

${\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\left[\begin{array}{ccc}-1 & 2 & 3 \\ 0 & 1 & 6 \\ 0 & 0 & -1\end{array}\right]^{ k }\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=33 }$

${\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\left[\begin{array}{ccc}-1 & 2 & 3 \\ 0 & 1 & 6 \\ 0 & 0 & -1\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=33 }$

As $A^{2}=\left[\begin{array}{ccc}-1 & 2 & 3 \\ 0 & 1 & 6 \\ 0 & 0 & -1\end{array}\right]\left[\begin{array}{ccc}-1 & 2 & 3 \\ 0 & 1 & 6 \\ 0 & 0 & -1\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 6 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

$A ^{4}=\left[\begin{array}{lll}1 & 0 & 6 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}1 & 0 & 6 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 12 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

$A ^{8}=\left[\begin{array}{llll}1 & 0 & 24 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

$A^{10}=\left[\begin{array}{lll}1 & 0 & 6 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}1 & 0 & 24 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{lll}1 & 0 & 30 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

for $K \rightarrow$ Even $A ^{ K }=\left[\begin{array}{ccc}1 & 0 & 3 K \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$

$X ^{ T } A ^{ K } X =33$ (This is not correct)

1] $\left[\begin{array}{ccc}1 & 0 & 3 K \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$

$\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$

$X ^{ T } A ^{ K } X =33$ (This is not correct)

$\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\left[\begin{array}{lll}1 & 0 & 3 K \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$

$=\left[\begin{array}{lll}1 & 1 & 3 K +1\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=[3 K +3]$

$\therefore 3 K +3=33 \therefore K =10$

$\therefore 3 K +3=33 \therefore K =10$

But it should be dropped as 33 is not matrix

If $K$ is odd

$\begin{array}{l}X^{ T } A^{ K } X =33 \\X ^{ T } AA ^{ K -1} X =33\end{array}$

$\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]\left[\begin{array}{ccc}-1 & 2 & 3 \\ 0 & 1 & 6 \\ 0 & 0 & -1\end{array}\right]\left[\begin{array}{ccc}1 & 0 & 3 k-3 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=33$

${\left[\begin{array}{lll}-1 & 3 & 8\end{array}\right]\left[\begin{array}{l}3 k -2 \\ 1 \\ 1\end{array}\right]=[33] }$

${[-3 k +13]=[33] }$

$k =20 / 3$ (not possible)

Standard 12
Mathematics

Similar Questions

माना की $\quad P_1=I=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right], \quad P_2=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right], \quad P_3=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right], \quad P_4=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right], \quad P_5=\left[\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$,

$P_6=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right]$ और $X=\sum_{k=1}^6 P_k\left[\begin{array}{lll}2 & 1 & 3 \\ 1 & 0 & 2 \\ 3 & 2 & 1\end{array}\right] P_k^{\top}$

जहाँ आव्यूह (matrix) $P _{ K }$ के परिवर्त (transpose) को $P _{ K }^{ T }$ से दर्शाया गया है। तब निम्न में से कौन सा (से) विकल्प सहीं है (हैं)?

जहाँ आव्यूह (matrix) $P _{ K }$ के परिवर्त (transpose) को $P _{ E }^{ T }$ से दर्शाया गया है। तब निम्न में से कौन सा (से) विकल्प सहीं है

(हैं)?

$(1)$ $X -30 I$ एक व्युत्क्रमणीय (invertible) आव्यूह है।

$(2)$ $X$ के विकर्ण (diagonal) की प्रविष्टियों (entries) का योग $18$ है

$(3)$यदि $X \left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\alpha\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$, तब $\alpha=30$

$(4)$ $X$ एक समित (symmetric) अव्युह हैं

normal
(IIT-2019)

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.