मान लें $A, 10$ अवयवों वाला एक समुच्चय है. $A$ से $A$ में अतिरिक्त संबंधों की संख्या जो स्वतुल्य $(reflexive)$ हैं परन्तु सममित $(symmetric)$ नहीं है, कितनी होगी?

  • [KVPY 2020]
  • A

    $2^{89}-1$

  • B

    $2^{89}-2^{45}$

  • C

    $2^{45}-1$

  • D

    $2^{90}-2^{45}$

Similar Questions

माना $\mathbb{R}$ में एक सम्बन्ध $R$ है जो निम्न प्रकार दिया गया है $\mathrm{R}=\{(\mathrm{a}, \mathrm{b}): 3 \mathrm{a}-3 \mathrm{~b}+\sqrt{7}$ अपरिमेय संख्या है \} | तब $\mathrm{R}$

  • [JEE MAIN 2023]

यदि समुच्चय $\{1,2,3,4\}$ पर सबसे छोटा तुल्यता संबंध $\mathrm{R}$ इस प्रकार है कि $\{(1,2),(1,3)\} \subset \mathrm{R}$ है, तो $\mathrm{R}$ में अवयवों की संख्या है...............

  • [JEE MAIN 2024]

यदि $ R$ , एक परिमित समुच्चय $A$  जिसमें $m $ अवयव है, से परिमित समुच्चय $B$ जिसमें $n$ अवयव है, में परिभाषित है तब $A$  से $B$ में संबंधों की संख्या है

सभी $a, b, \in R$ के लिए $a R_1 b \Leftrightarrow a^2+b^2=1$ तथा सभी $(a, b),(c, d) \in N \times N$ के लिए $(a, b) R_2(c, d) \Leftrightarrow a+d=b+c$ द्वारा परिभाषित संबंधों $\mathrm{R}_1$ तथा $\mathrm{R}_2$ में:

  • [JEE MAIN 2024]

समुच्चय $A$  पर परिभाषित संबंध $R$, प्रति सममित है, यदि $(a,\,b) \in R \Rightarrow (b,\,a) \in R$