मान लें $A=\left\{\theta \in R:\left(\frac{1}{3} \sin \theta+\frac{2}{3} \cos \theta\right)^2=\frac{1}{3} \sin ^2 \theta+\frac{2}{3} \cos ^2 \theta\right\}$
$A \cap[0, \pi]$ एक रिक्त समुच्चय है।
$A \cap[0, \pi]$ में ठीक एक अवयव है।
$A \cap[0, \pi]$ में ठीक दो अवयव हैं।
$A \cap[0, \pi]$ में दो से अधिक अवयव हैं।
निम्नलिखित प्रत्येक समीकरणों का व्यापक हल ज्ञात कीजिए
$\cos 4 x=\cos 2 x$
समीकरण $\cos x - x + \frac{1}{2} = 0$ का एक मूल किस अन्तराल में स्थित है
यदि $5\cos 2\theta + 2{\cos ^2}\frac{\theta }{2} + 1 = 0, - \pi < \theta < \pi $, तब $\theta = $
अंतराल $[0,2 \pi]$ में समीकरण $\frac{5}{4} \cos ^2 2 x+\cos ^4 x+\sin ^4 x+\cos ^6 x+\sin ^6 x=2$ के विभिन्न हलों (distinct solutions) की संख्या है।
समीकरणों $\tan \theta = - 1$ तथा $\cos \theta = \frac{1}{{\sqrt 2 }}$ को सन्तुष्ट करने वाला $\theta $ का सर्वव्यापक मान है