समीकरण $4 \sin ^2 x-4 \cos ^3 x+9-4 \cos x=0$; $x \in[-2 \pi, 2 \pi]$ के हलों की संख्या है :

  • [JEE MAIN 2024]
  • A

    $1$

  • B

    $3$

  • C

    $2$

  • D

    $0$

Similar Questions

हर धनात्मक वास्तविक संख्या $\lambda$ के लिए मान लीजिए कि $A_\lambda$ उन सभी प्राकृतिक संख्याओं $n$ का समुच्चय है जो $|\sin (\sqrt{n+1})-\sin (\sqrt{n})| < \lambda$ को संतुष्ट करती है. यदि $A_\lambda^c$, प्राकृतिक संख्याओं के समुच्चय में $A_\lambda$ का पूरक है तो

  • [KVPY 2016]

समीकरण $\left| {\,\begin{array}{*{20}{c}}{\cos \theta }&{\sin \theta }&{\cos \theta }\\{ - \sin \theta }&{\cos \theta }&{\sin \theta }\\{ - \cos \theta }&{ - \sin \theta }&{\cos \theta }\end{array}\,} \right| = 0$ का व्यापक हल होगा

यदि $2\sin \theta  + \tan \theta  = 0$, तो $\theta $ के व्यापक मान हैं

${\sin ^2}\theta \sec \theta  + \sqrt 3 \tan \theta  = 0$ का व्यापक हल है  

यदि $\tan (\cot x) = \cot (\tan x),$ तो $\sin 2x =$