कार्तीय तल में $C_1, C_2, \ldots, C_n$, जहां $n \geq 3$, नामक वृत्त दिये गये हैं जिनकी त्रिज्या क्रमानुसार $r_1, r_2, \ldots, r_n$ है। प्रत्येक $i$, $1 \leq i \leq n-1$ के लिए, वृत्त $C_i$ तथा $C_{i+1}$ एक दूसरे को बाह्य रूप से छूते हैं। यदि $x$-अक्ष तथा रेखा $y=2 \sqrt{2} x+10$ दोनों ही दिये गए सारे वृत्तों की स्पर्श रेखाएँ है तो क्रमानुसार सूची $r_1, r_2, \ldots, r_n$
समांतर श्रेणी में है जिसका सर्वांतर $3+\sqrt{2}$ है
गुणोत्तर श्रेणी में है जिसका सार्व अनुपात $3+\sqrt{2}$ है
समांतर श्रेणी में है जिसका सर्वांतर $2+\sqrt{3}$ है
गुणोत्तर श्रेणी में है जिसका सार्व अनुपात $2+\sqrt{3}$ है
गुणोत्तर श्रेणी $3,3^{2}, 3^{3}, \ldots$ के कितने पद आवश्यक हैं ताकि उनका योगफल $120$ हो जाए |
यदि $x > 1,\;y > 1,{\rm{ }}z > 1$ गुणोत्तर श्रेणी में ($G.P$) हों, तो $\frac{1}{{1 + {\rm{In}}\,x}},\;\frac{1}{{1 + {\rm{In}}\,y}},$ $\;\frac{1}{{1 + {\rm{In}}\,z}}$ होंगे
यदि $a,\,b,\,c$ गुणोत्तर श्रेणी में हों, तो
$500$ रुपये धनराशि $10 \%$ वार्षिक चक्रवृद्धी ब्याज पर $10$ वर्षों बाद क्या हो जाएगी, ज्ञात कीजिए ?
किसी अनंत गुणोत्तर श्रेणी का योग $3$ है तथा श्रेणी के पदों के वर्गों का योग भी $3$ है, तो श्रेणी होगी