कार्तीय तल में $C_1, C_2, \ldots, C_n$, जहां $n \geq 3$, नामक वृत्त दिये गये हैं जिनकी त्रिज्या क्रमानुसार $r_1, r_2, \ldots, r_n$ है। प्रत्येक $i$, $1 \leq i \leq n-1$ के लिए, वृत्त $C_i$ तथा $C_{i+1}$ एक दूसरे को बाह्य रूप से छूते हैं। यदि $x$-अक्ष तथा रेखा $y=2 \sqrt{2} x+10$ दोनों ही दिये गए सारे वृत्तों की स्पर्श रेखाएँ है तो क्रमानुसार सूची $r_1, r_2, \ldots, r_n$

  • [KVPY 2014]
  • A

    समांतर श्रेणी में है जिसका सर्वांतर $3+\sqrt{2}$ है

  • B

    गुणोत्तर श्रेणी में है जिसका सार्व अनुपात $3+\sqrt{2}$ है

  • C

    समांतर श्रेणी में है जिसका सर्वांतर $2+\sqrt{3}$ है

  • D

    गुणोत्तर श्रेणी में है जिसका सार्व अनुपात $2+\sqrt{3}$ है

Similar Questions

अनुक्रम $\frac{1}{3}, \frac{5}{9}, \frac{19}{27}, \frac{65}{81}, \ldots \ldots$ के प्रथम $100$ पदों के योगफल से छोटा या बराबर महत्तम पूर्णांक होगा

  • [JEE MAIN 2022]

यदि एक $G.P.$ के चार धनात्मक क्रमागत पदों के योग तथा गुणनफल क्रमशः $126$ तथा $1296$ हैं, तो ऐसी सभी $G.P.$ के सार्व अनुपातों का योग है

  • [JEE MAIN 2023]

माना $a _1, a _2, a _3, \ldots$. धनात्मक पूर्णांकों का एक अनुक्रम समान्तर श्रेढ़ी में है जिसका सार्वअन्तर $2$ है। माना $b _1, b _2$, $b _3, \ldots$ धनात्मक पूर्णांकों का एक अनुक्रम गुणोत्तर श्रेढ़ी में है जिसका सार्वअनुपात $2$ है। यदि $a _1= b _1=c$ हो, तो $c$ के सभी संभव मानों की संख्या, जिसके लिये किसी भी धनात्मक पूर्णांक $n$ के लिये समिका

$2\left( a _1+ a _2+\ldots+ a _{ n }\right)= b _1+ b _2+\ldots . .+ b _{ n }$

सत्य हो, होगी

  • [IIT 2020]

माना $x _1, X _2, x _3, \ldots, x _{20}$ एक गुणोत्तर श्रेढ़ी में हैं, जिसमें $x _1=3$ तथा सार्व अनुपात $\frac{1}{2}$ है। प्रत्येक $x _{ i }$ की जगह $\left( x _{ i }- i \right)^2$ लेकर नये आंकड़ें बनाए जाते हैं। यदि नये आंकड़ों का माध्य $\overline{ x }$ है तो महत्तम पूर्णाक $\leq \overline{ x }$ है $..........$ I

  • [JEE MAIN 2022]

अनन्त गुणोत्तर श्रेणी का प्रथम पद $x$ और उसका योग $5$ है, तब

  • [IIT 2004]