- Home
- Standard 11
- Mathematics
4-2.Quadratic Equations and Inequations
normal
The number of solutions of the equation $x ^2+ y ^2= a ^2+ b ^2+ c ^2$. where $x , y , a , b , c$ are all prime numbers, is
A
$0$
B
$1$
C
more than $1$ but finite
D
infinite
(KVPY-2021)
Solution
(a)
Any prime other than 2,3 is of the form $6 k \pm 1$
$\therefore 6 k \pm 1= p$
$6 \lambda+1= p ^2$
$(I)$ If $2 \& 3$ are not solutions
$x^2 \equiv 1(\bmod 6)$
$y ^2 \equiv 1(\bmod 6)$
LHS $\equiv 2(\bmod 6)$
$RHS \equiv 3(\bmod 6)$
$(II)$ If $2$ is not then all are odd
$LHS$ $\equiv$ Even
$RHS$ $\equiv$ Odd
$C – I$ when $x = y =2$
$a^2+b^2+2=8$
Let $a =2$ then $b ^2+ c ^2=4$
which is not possible for prime ' $b$ ' \& 'c'
$C-II$ $x =2 ; y \neq 2$
$4+ y ^2= a ^2+ b ^2+ c ^2$
Not possible
$C-III$ $x \neq 2 ; y \neq 2$
Not possible
Standard 11
Mathematics