The number of solutions of the equation $x ^2+ y ^2= a ^2+ b ^2+ c ^2$. where $x , y , a , b , c$ are all prime numbers, is
$0$
$1$
more than $1$ but finite
infinite
Let $p(x)=a_0+a_1 x+\ldots+a_n x^n$ be a non-zero polynomial with integer coefficients. If $p(\sqrt{2}+\sqrt{3}+\sqrt{6})=0$, then the smallest possible value of $n$ is
Let $f: R \rightarrow R$ be the function $f(x)=\left(x-a_1\right)\left(x-a_2\right)$ $+\left(x-a_2\right)\left(x-a_3\right)+\left(x-a_3\right)\left(x-a_1\right)$ with $a_1, a_2, a_3 \in R$.Then, $f(x) \geq 0$ if and only if
The equation $e^{4 x}+8 e^{3 x}+13 e^{2 x}-8 e^x+1=0, x \in R$ has:
Let $x$ and $y$ be two $2-$digit numbers such that $y$ is obtained by reversing the digits of $x$. Suppose they also satisfy $x^2-y^2=m^2$ for some positive integer $m$. The value of $x+y+m$ is
The number of real roots of the equation ${e^{\sin x}} - {e^{ - \sin x}} - 4$ $ = 0$ are