Let $m$ and $n$ be the numbers of real roots of the quadratic equations $x^2-12 x+[x]+31=0$ and $x ^2-5| x +2|-4=0$ respectively, where $[ x ]$ denotes the greatest integer $\leq x$. Then $m ^2+ mn + n ^2$ is equal to $..............$.
$9$
$8$
$7$
$6$
The number of integers $a$ in the interval $[1,2014]$ for which the system of equations $x+y=a$, $\frac{x^2}{x-1}+\frac{y^2}{y-1}=4$ has finitely many solutions is
If two roots of the equation ${x^3} - 3x + 2 = 0$ are same, then the roots will be
If the quadratic equation ${x^2} + \left( {2 - \tan \theta } \right)x - \left( {1 + \tan \theta } \right) = 0$ has $2$ integral roots, then sum of all possible values of $\theta $ in interval $(0, 2\pi )$ is $k\pi $, then $k$ equals
Product of real roots of the equation ${t^2}{x^2} + |x| + \,9 = 0$
If the sum of two of the roots of ${x^3} + p{x^2} + qx + r = 0$ is zero, then $pq =$