- Home
- Standard 11
- Mathematics
4-2.Quadratic Equations and Inequations
hard
Let $m$ and $n$ be the numbers of real roots of the quadratic equations $x^2-12 x+[x]+31=0$ and $x ^2-5| x +2|-4=0$ respectively, where $[ x ]$ denotes the greatest integer $\leq x$. Then $m ^2+ mn + n ^2$ is equal to $..............$.
A
$9$
B
$8$
C
$7$
D
$6$
(JEE MAIN-2023)
Solution

$x ^2-12 x +[ x ]+31=0$
$\{ x \}= x ^2-11 x +31$
$0 \leq x ^2-11 x +31 < 1$
$x ^2-11 x +30 < 0$
$x \in(5,6)$
$\text { so } \quad[ x ]=5$
$x ^2-12 x +5+31=0$
$x ^2-12 x +36=0$
$x =6 \quad \text { but } x \in(5,6)$
$\text { so } \quad x \in \phi$
$x =\{7,-2,-3\}$
$n =3$
$m ^2+ mn + n ^2= n ^2=9$
Standard 11
Mathematics