किसी दीर्घवृत $(eilipse)$ $\frac{x^2}{a^2}+\frac{y^2}{b^2}=1, a > b > 0$ पर $P$ एक स्वेच्छ बिन्दु $(arbitrary\,point)$ है। मान लीजिए कि $F _1$ और $F _2$ दीर्घवृत्त की नाभियाँ $(foci)$ हैं। $PF _1 F _2$ त्रिभुज के केन्द्रक $(centroid)$ का बिन्दुपथ $(locus)$ जब $P$ इस दीर्घवृत्त $(ellipse)$ पर घुमता है, क्या होगा ?
वृत्त $(a\,circe)$
परवलय $(parabola)$
दीर्घवृत्त $(an\,ellipse)$
अतिपरवलय $(hyperbola)$
प्रतिबंधों को संतुष्ट करते हुए दीर्घवृत्त का समीकरण ज्ञात कीजिए
दीर्घ अक्ष की लंबाई $26,$ नाभियाँ $(±5,0)$
माना वक्रों $4 x ^{2}+9 y ^{2}=36$ तथा $(2 x )^{2}+(2 y )^{2}=31$ की एक ऊभयनिष्ठ स्पर्श रेखा $L$ है। तो रेखा $L$ की प्रवणता का वर्ग बराबर है
मान लीजिए कि $x^2=4 k y, k > 0$ एक परवलय है, जिसका शीर्ष $A$ है। मान लें कि $B C$ इसका नाभि लंब $(latus\,rectum)$ है। एक दीर्घवृत, जिसका केंद्र $B C$ पर है और परवलय को $A$ पर छूता है, $B C$ को $D$ एवं $E$ बिन्दुओं पर इस प्रकार काटता है कि $B D=D E=E C(B, D, E, C$ के क्रम में)। दीर्घवृत की उत्केन्द्रता $(eccentricity)$ निम्न है :
दीर्घवृत्त $9{x^2} + 5{y^2} = 45$ के बिन्दु $ (0, 3)$ पर अभिलम्ब का समीकरण है
दीर्घवृत्त $9{x^2} + 5{y^2} - 30y = 0$ की उत्केन्द्रता है