मान लीजिए कि $r$ वास्तविक संख्या $(real\,rumber)$ है और $n \in N$ इस प्रकार है कि $2 x^2+2 x+1$ बहुपद $(x+1)^n-r$ बहुपद को विभाजित करता है तो $(a, r)$ का मान हो सकता है--

  • [KVPY 2010]
  • A

    $\left(4000,4^{1000}\right)$

  • B

    $\left(4000, \frac{1}{4^{1000}}\right)$

  • C

    $\left(4^{1000}, \frac{1}{4^{1000}}\right)$

  • D

    $\left(4000, \frac{1}{4000}\right)$

Similar Questions

दिये गए दो चर समीकरण युग्म पर विचार करें : $x+y=a, \frac{x^2}{x-1}+\frac{y^2}{y-1}=4$ अंतराल $[0,2014]$ में कितनी प्राकृत संख्याओं $a$ के लिए दिये गए समीकरण युग्म के निश्चित रूप से परिमित अनेक हल हैं।

  • [KVPY 2014]

माना $\alpha=\max _{x \in R }\left\{8^{2 \sin 3 x} \cdot 4^{4 \cos 3 x}\right\}$ तथा $\beta=\min _{ n \in R }\left\{8^{2 \sin 3 n } \cdot 4^{4 \cos 3 x }\right\}$ हैं। यदि द्विघातीय समीकरण $8 x ^{2}+ bx + c =0$ के मूल $\alpha^{1 / 5}$ तथा $\beta^{1 / 5}$ है, तो $c - b$ का मान बराबर है

  • [JEE MAIN 2021]

समीकरण ${x^4} - 2{x^3} + x = 380$ के मूल हैं

समीकरण $\left(e^{2 x}-4\right)\left(6 e^{2 x}-5 e^x+1\right)=0$के सभी वास्तविक मूलों का योगफल होगा

  • [JEE MAIN 2022]

मान लें कि एक द्वियातीय बहुपद $P(x)=a x^2+b x+c$ के धनात्मक गुणांक क्रम से $a, b, c$ अकगणितीय श्रेढ़ी $(arithmatic\,progression)$ में है. यदि $P(x)=0$ के पूर्णाक मूल $\alpha$ और $\beta$ हों, तो $\alpha+\beta+\alpha \beta$ का मान होगा

  • [KVPY 2016]