सभी $a \in \mathbb{R}$, जिनके लिए समीकरण $\mathrm{x}|\mathrm{x}-1|+|\mathrm{x}+2|+\mathrm{a}=0$ का मात्र एक वास्तविक मूल है :
$(-6,-3)$
$(-\infty, \infty)$
$(-6, \infty)$
$(-\infty,-3)$
समीकरण ${x^5} - 6{x^2} - 4x + 5 = 0$ के अधिकतम वास्तविक हलों की संख्या होगी
मान लें $a=\sum \limits_{n=101}^{200} 2^n \sum \limits_{k=101}^n \frac{1}{k !}$ और $b=\sum \limits_{n=101}^{200} \frac{2^{201}-2^n}{n !}$ तब $\frac{a}{b}$ है:
यदि $\alpha ,\beta $ समीकरण ${x^2} - ax + b = 0$ के मूल हों तथा यदि ${\alpha ^n} + {\beta ^n} = {V_n}$ हों, तो
मान लीजिये कि $a, b, c$ धनात्मक पूर्णांक हैं जो समीकरण $2^a+4^b+8^c=328$ को संतुष्ट करती हैं। इस स्थिति में $\frac{a+2 b+3 c}{a b c}$ का मान निम्न होगा :
समीकरण $|x{|^2} - 7|x| + 12 = 0$ के मूलों की संख्या है