सभी $a \in \mathbb{R}$, जिनके लिए समीकरण $\mathrm{x}|\mathrm{x}-1|+|\mathrm{x}+2|+\mathrm{a}=0$ का मात्र एक वास्तविक मूल है :
$(-6,-3)$
$(-\infty, \infty)$
$(-6, \infty)$
$(-\infty,-3)$
समीकरण $3\left(x^2+\frac{1}{x^2}\right)-2\left(x+\frac{1}{x}\right)+5=0$ की संख्या है:
यदि समीकरण ${x^3} - 9{x^2} + 14x + 24 = 0$ के दो मूलों का अनुपात $3 : 2$ हो तो मूल होंगे
समीकरण $|x{|^2}$-$3|x| + 2 = 0$ के वास्तविक हलों की संख्या है
यदि $x, y, z$ धनात्मक वास्तविक संख्या हैं, तो निम्नलिखित में से कौन से समीकरण $x=y=z$ को संकेत करते हैं ?
$I.$ $x^3+y^3+z^3=3 x y z$
$II.$ $x^3+y^2 z+y z^2=3 x y z$
$III.$ $x^3+y^2 z+z^2 x=3 x y z$
$IV.$ $(x+y+z)^3=27 x y z$
माना समीकरण $3^{ x }\left(3^{ x }-1\right)+2=\left|3^{ x }-1\right|+\left|3^{ x }-2\right|$ के सभी वास्तविक मूलों का समुच्चय $S$ है। तो $S$