$x$ के मानों का समुच्चय जो कि $5x + 2 < 3x + 8$ तथा $\frac{{x + 2}}{{x - 1}} < 4$ को सन्तुष्ट करता है
$(2,\,3)$
$( - \infty ,\,1) \cup (2,\,3)$
$( - \infty ,\,1)$
$(1,\,3)$
यदि $|{x^2} - x - 6| = x + 2$, तो $x$ के मान हैं
यदि समीकरण $\sqrt{2 x+1}-\sqrt{2 x-1}=1,\left(x \geqslant \frac{1}{2}\right)$, का $x$ एक हल है, तो $\sqrt{4 x^{2}-1}$ बराबर है
यदि समीकरण ${x^3} + px + q = 0$ के मूल $\alpha ,\beta $ और $\gamma $ हों तो ${\alpha ^3} + {\beta ^3} + {\gamma ^3}$ का मान होगा
यदि $\alpha ,\beta $ समीकरण ${x^2} + (3 - \lambda )x - \lambda = 0$ के मूल हों, तो $\lambda $ के किस मान के लिये ${\alpha ^2} + {\beta ^2}$ का मान न्यूनतम होगा
माना समीकरण $3^{ x }\left(3^{ x }-1\right)+2=\left|3^{ x }-1\right|+\left|3^{ x }-2\right|$ के सभी वास्तविक मूलों का समुच्चय $S$ है। तो $S$