$x$ के मानों का समुच्चय जो कि $5x + 2 < 3x + 8$ तथा $\frac{{x + 2}}{{x - 1}} < 4$ को सन्तुष्ट करता है

  • A

    $(2,\,3)$

  • B

    $( - \infty ,\,1) \cup (2,\,3)$

  • C

    $( - \infty ,\,1)$

  • D

    $(1,\,3)$

Similar Questions

यदि समीकरण $8{x^3} - 14{x^2} + 7x - 1 = 0$ के मूूल गुणोत्तर श्रेणी में हों, तो मूल होंगे

किसी खेत में पशुओं की जनसंख्या इस प्रकार परिवर्तित होती है: वर्ष $n+2$ तथा वर्ष $n$ की जनसंख्याओं के बीच का अंतर वर्ष $n+1$ की जनसंख्या समानुपातिक है। यहाँ $n$ एक प्राकृत संख्या है। यदि वर्ष $2010,2011$ और $2013$ में पशुओं की जनसंख्या क्रमानुसार $39,60$ और $123$ हो तो वर्ष $2012$ में जनसंख्या का मान होगा:

  • [KVPY 2014]

दिये गए दो चर समीकरण युग्म पर विचार करें : $x+y=a, \frac{x^2}{x-1}+\frac{y^2}{y-1}=4$ अंतराल $[0,2014]$ में कितनी प्राकृत संख्याओं $a$ के लिए दिये गए समीकरण युग्म के निश्चित रूप से परिमित अनेक हल हैं।

  • [KVPY 2014]

यदि ${x^3} + 8 = 0$ के मूल $\alpha ,\,\beta$ तथा $\gamma $  हैं, तो वह समीकरण जिसके मूल ${\alpha ^2},{\beta ^2}$ तथा ${\gamma ^2}$ है, होगा

समीकरण ${x^2} - |x| - \,6 = 0$ के सभी वास्तविक मूलों का गुणनफल होगा