कुछ धनात्मक पूर्णांक संख्याओं $a$ और $b$ के लिए यदि $t$ एक वास्तविक संख्या इस प्रकार है कि $t^2=a t+b$. तब किसी धनात्मक पूर्णांक $a$ और $b$ के लिए, $t^3$ निम्नलिखित में किसके बराबर नहीं है?
$4 t+3$
$8 t+5$
$10 t+3$
$6 t+5$
यदि $x$ वास्तविक है तो $\frac{{{x^2} + 34x - 71}}{{{x^2} + 2x - 7}}$ का मान निम्न के बीच में नहीं होगा
माना समीकरण $\mathrm{x}^7+3 \mathrm{x}^5-13 \mathrm{x}^3-15 \mathrm{x}=0$ के मूल $\alpha_1, \alpha_2, \ldots, \alpha_7$ हैं तथा $\left|\alpha_1\right| \geq\left|\alpha_2\right| \geq \ldots \geq\left|\alpha_7\right|$ हैं तो $\alpha_1 \alpha_2-\alpha_3 \alpha_4+\alpha_5 \alpha_6$ बराबर है____________.
समीकरण ${x^4} - 4{x^3} + 6{x^2} - 4x + 1 = 0$ के मूल होंगे
$A B C$ त्रिभुज में $A B, A C$ पर क्रमशः $D$ और $E$ बिन्दु हैं जिससे कि $D E B C$ के समांतर $(parallel)$ है। मान लीजिए कि BE, CD O पर प्रतिच्छेद $(intersect)$ होते है। यदि $ADE$ मौर $ODE$ त्रिभुजों का क्षेत्र फल $(area)$ क्रमश: $3$ और $1$ है तो $ABC$ का क्षेत्रफल औचित्य $(justification)$ के साथ ज्ञात करें।
यदि $x, y, z$ अशून्यक $(non-zero)$ वास्तविक संख्याएँ इस प्रकार हैं कि $\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=7$ तथा $\frac{y}{x}+\frac{z}{y}+\frac{x}{z}=9$, तब $\frac{x^3}{y^3}+\frac{y^3}{z^3}+\frac{z^3}{x^3}-3$ का मान क्या होगा ?