कुछ धनात्मक पूर्णांक संख्याओं $a$ और $b$ के लिए यदि $t$ एक वास्तविक संख्या इस प्रकार है कि $t^2=a t+b$. तब किसी धनात्मक पूर्णांक $a$ और $b$ के लिए, $t^3$ निम्नलिखित में किसके बराबर नहीं है?
$4 t+3$
$8 t+5$
$10 t+3$
$6 t+5$
यदि वास्तविक संख्याएँ $a, b, c$ इस प्रकार है कि $a+b+c=0$ तथा $a^2+b^2+c^2=1$, तब $(3 a+5 b-8 c)^2+(-8 a+3 b+5 c)^2+(5 a-8 b+3 c)^2$ निम्नलिखित के बराबर है
दिये गए दो चर समीकरण युग्म पर विचार करें : $x+y=a, \frac{x^2}{x-1}+\frac{y^2}{y-1}=4$ अंतराल $[0,2014]$ में कितनी प्राकृत संख्याओं $a$ के लिए दिये गए समीकरण युग्म के निश्चित रूप से परिमित अनेक हल हैं।
समीकरण $\left(e^{2 x}-4\right)\left(6 e^{2 x}-5 e^x+1\right)=0$के सभी वास्तविक मूलों का योगफल होगा
मान लीजिए कि $r$ वास्तविक संख्या $(real\,rumber)$ है और $n \in N$ इस प्रकार है कि $2 x^2+2 x+1$ बहुपद $(x+1)^n-r$ बहुपद को विभाजित करता है तो $(a, r)$ का मान हो सकता है--
यदि $72^x \cdot 48^y=6^{x y}$ हो, जहाँ $x$ तथा $y$ अशून्य परिमेय संख्याएँ हैं, तब $x+y$ का मान होगा