माना द्विघात समीकरण $x ^2- x -4=0$ के मूल $\alpha, \beta(\alpha > \beta)$ हैं। यदि $P _{ n }=\alpha^{ n }-\beta^{ n }, n \in N$ है, तो $\frac{ P _{15} P _{16}- P _{14} P _{16}- P _{15}^2+ P _{14} P _{15}}{ P _{13} P _{14}}$ बराबर है $.........$.
$15$
$14$
$13$
$16$
समीकरण $e^{4 x}-e^{3 x}-4 e^{2 x}-e^{x}+1=0$ के वास्तविक मूलों की संख्या है
यदि ${x^3} + 8 = 0$ के मूल $\alpha , \beta$ तथा $\gamma$ हैं, तो वह समीकरण जिसके मूल ${\alpha ^2},{\beta ^2}$ तथा ${\gamma ^2}$ है, होगा
यदि व्यंजक $\left( {mx - 1 + \frac{1}{x}} \right)$ सदैव अऋणात्मक है तब $m$ का न्यूनतम मान होगा
वक्रों $\left\{x \in R:(\sqrt{3}+\sqrt{2})^x+(\sqrt{3}-\sqrt{2})^x=10\right\}$ है, तो $\mathrm{S}$ में अवयवों की संख्या है :
पूर्णांक " $k$ ", जिसके लिए असमिका $x ^{2}-2(3 k -1) x +8 k ^{2}-7>0, R$ में प्रत्येक $x$ के लिए, मान्य है, है