माना द्विघात समीकरण $x ^2- x -4=0$ के मूल $\alpha, \beta(\alpha > \beta)$ हैं। यदि $P _{ n }=\alpha^{ n }-\beta^{ n }, n \in N$ है, तो $\frac{ P _{15} P _{16}- P _{14} P _{16}- P _{15}^2+ P _{14} P _{15}}{ P _{13} P _{14}}$ बराबर है $.........$.
$15$
$14$
$13$
$16$
यदि समीकरण ${x^3} + px + q = 0$ के मूल $\alpha ,\beta $ और $\gamma $ हों तो ${\alpha ^3} + {\beta ^3} + {\gamma ^3}$ का मान होगा
$A B C$ त्रिभुज में $A B, A C$ पर क्रमशः $D$ और $E$ बिन्दु हैं जिससे कि $D E B C$ के समांतर $(parallel)$ है। मान लीजिए कि BE, CD O पर प्रतिच्छेद $(intersect)$ होते है। यदि $ADE$ मौर $ODE$ त्रिभुजों का क्षेत्र फल $(area)$ क्रमश: $3$ और $1$ है तो $ABC$ का क्षेत्रफल औचित्य $(justification)$ के साथ ज्ञात करें।
कुछ धनात्मक पूर्णांक संख्याओं $a$ और $b$ के लिए यदि $t$ एक वास्तविक संख्या इस प्रकार है कि $t^2=a t+b$. तब किसी धनात्मक पूर्णांक $a$ और $b$ के लिए, $t^3$ निम्नलिखित में किसके बराबर नहीं है?
यदि $a < 0$ तब असमिका $a{x^2} - 2x + 4 > 0$ के मूल निम्न द्वारा प्रदर्शित होंगे
यदि बहुपद $P(x)$ का समुच्चय S है जिसकी घात $ \le 2$ हो, जबकि $P(0) = 0,$$P(1) = 1$,$P'(x) > 0,{\rm{ }}\forall x \in (0,\,1)$, तब