Gujarati
4-2.Quadratic Equations and Inequations
normal

मान लें कि $a$ एक धनात्मक वास्तविक संख्या इस प्रकार है कि $a^5-a^3+a=2$. तब

A

$a^6 < 2$

B

$2 < a^6 < 3$

C

$3 < a^6 < 4$

D

$4 \leq a^6$

(KVPY-2016)

Solution

(c)

Given, $a^5-a^3+a=2$

$\Rightarrow \quad a^5-a^3+a-2=0$

Let $f(a)=a^5-a^3+a-2$

$f^{\prime}(a)=5 a^4-3 a^2+1$

$f^{\prime}(a)>0, \forall a \in R$

$\therefore a^5-a^3+a-2=0$ has only one roots.

for $a^6=3 \Rightarrow a=(3)^{1 / 6}=12$ [by calculation]

$f\left(4^{1 / 6}\right) > 0$ and at $a^6=4, a=(4)^{1 / 6}$

So one root lies in $(3,4)$.

$\therefore 3 < a^6 < 4$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.