यदि समीकरण $8{x^3} - 14{x^2} + 7x - 1 = 0$ के मूूल गुणोत्तर श्रेणी में हों, तो मूल होंगे
$1,\frac{1}{2},\frac{1}{4}$
$2, 4, 8$
$3, 6, 12$
इनमें से कोई नहीं
यदि बहुपद $P(x)$ का समुच्चय S है जिसकी घात $ \le 2$ हो, जबकि $P(0) = 0,$$P(1) = 1$,$P'(x) > 0,{\rm{ }}\forall x \in (0,\,1)$, तब
वह प्रतिबंध जिसके लिये ${x^3} - 3px + 2q$,${x^2} + 2ax + {a^2}$ प्रकार के गुणनखण्ड से विभाजित होगा
समीकरण $e ^{4 x }+ e ^{3 x }-4 e ^{2 x }+ e ^{ x }+1=0$ के वास्तविक मूलों की संख्या है
समीकरण $\sqrt{3 x^{2}+x+5}=x-3$, जहाँ $x$ वास्तविक है, का / के
मान लें कि $a$ एक धनात्मक वास्तविक संख्या इस प्रकार है कि $a^5-a^3+a=2$. तब