यदि समीकरण $8{x^3} - 14{x^2} + 7x - 1 = 0$ के मूूल गुणोत्तर श्रेणी में हों, तो मूल होंगे
$1,\frac{1}{2},\frac{1}{4}$
$2, 4, 8$
$3, 6, 12$
इनमें से कोई नहीं
$A B C$ त्रिभुज में $A B, A C$ पर क्रमशः $D$ और $E$ बिन्दु हैं जिससे कि $D E B C$ के समांतर $(parallel)$ है। मान लीजिए कि BE, CD O पर प्रतिच्छेद $(intersect)$ होते है। यदि $ADE$ मौर $ODE$ त्रिभुजों का क्षेत्र फल $(area)$ क्रमश: $3$ और $1$ है तो $ABC$ का क्षेत्रफल औचित्य $(justification)$ के साथ ज्ञात करें।
यदि $|x - 2| + |x - 3| = 7$, तब $x =$
यदि समीकरण ${x^3} + x + 1 = 0$ के मूल $\alpha ,\beta ,\gamma $ हों, तो ${\alpha ^3}{\beta ^3}{\gamma ^3}$ का मान होगा
माना द्विघात समीकरण $$ \begin{aligned} x ^{2} \sin \theta- x (\sin \theta \cos \theta+1) &+\cos \theta \\ =& 0\left(0 < \theta < 45^{\circ}\right) \end{aligned} $$ के मूल $\alpha$ तथा $\beta(\alpha<\beta)$ हैं, तो $\sum_{ n =0}^{\infty}\left(\alpha^{ n }+\frac{(-1)^{ n }}{\beta^{ n }}\right)$ बराबर है
यदि आधार $10$ $(base\,10 )$ में प्राकृतिक संख्याओं $n$ के अंकों का गुणनफल $n^2-10 n-36$ है, तब ऐसी सभी प्राकृतिक संख्याओं का योगफल होगा :